Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Pulsed Power Accelerator Design with COMSOL Multiphysics® Software - new

D. Reisman[1]
[1]Sandia National Laboratories, Albuquerque, NM, USA

We have developed Thor: a pulsed power accelerator for performing dynamic material experiments. The design was aided by using the COMSOL Multiphysics® software with the AC/DC Module and RF Module. Our design process involved optimizing the impedance of the system while maintaining a good margin against electrical breakdown. By using a three-dimensional electromagnetic model of the entire power ...

Multi-Layers Surface Coil Design: Geometry Optimization - new

S. Aissani[1], L. Guendouz[2]
[1]CRM2, Institut Jean Barriol, University of Lorraine, Vandoeuvre-lès-Nancy, France
[2]Mesures et architectures électroniques, University of Lorraine, Vandoeuvre-lès-Nancy, France

Nuclear Quadrupole Resonance (RQN) is a radio frequency (RF) spectroscopic technique that is used to detect quadrupole nuclei such as Nitrogen-14. NQR was found to be a good candidate for detecting narcotics, explosives and medicines [1]. However, due to its low sensitivity the use of NQR is still limited. One way to increase the sensitivity is to improve the RF coil by means of a better RF ...

Plasmonics of Nano-Gaps - new

T. Hutter[1], S. Mahajan[2], S. R. Elliott[1]
[1]University of Cambridge, Cambridge, UK
[2]University of Southampton, Southampton, UK

Plasmons, i.e. the collective oscillations of electrons in a metallic nano-structure, lead to strong light scattering, absorption and an enhancement of the local electromagnetic field. In this work, the local electric-field enhancement in a system of dielectric nanoparticles placed very near to a metallic substrate is studied and discussed. Finite-element numerical simulations were used in ...

High Field Magnetic Diffusion into Nonlinear Ferrimagnetic Materials

J-W. Braxton Bragg[1], J. Dickens[1], A. Neuber[1], and K. Long[2]
[1]Center for Pulsed Power and Power Electronics, Texas Tech University, Lubbock, TX
[2]Dept. of Mathematics, Texas Tech University, Lubbock, TX

Ferrimagnetic based, coaxial nonlinear transmission lines (NLTLs) provide a means to generate sub-nanosecond risetime pulses (from nano-second input pulses) or megawatt level high power microwave oscillations, depending on the geometry, material, and external bias fields. This investigation uses the commercially available, finite element solver COMSOL to provide insight into pulse behavior. ...

Optimization of 3D Layered Metal-Dielectric Stacks (MDS) for Near-Field Fluorescence Imaging

P.S. Tan[1], K. Elsayad[2], K. Heinze[1]
[1]Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
[2]Research Institute of Molecular Pathology (IMP), Vienna, Austria

Nano-structures consisting of layered metal-dielectric stacks (MDSs) can be designed to have evanescent transmission and reflection coefficients that oscillate as a function of transverse wavevector and frequency. However, these structures always suffer from the material losses and surface roughness that are detrimental to image reconstruction. As such, we propose an optimized planar anisotropic ...

Modeling the Effect of Headspace Steam on Microwave Heating of Mashed Potato - new

J. Chen[1], K. Pitchai[1], D. Jones[1], J. Subbiah[1]
[1]University of Nebraska-Lincoln, Lincoln, NE, USA

Introduction: Domestic microwave ovens are widely used to heat food products, because of rapid and convenient heating. Nonuniform heating is the biggest issue in microwave heating process, which also causes food quality and safety issues. Microwave heating models are promising tools to assist in developing food products that deliver uniform heating. Due to intensive heating, moisture evaporation ...

Reliable Full-Wave EM Simulation of a Single-Layer SIW Interconnect with Transitions to Microstrip Lines - new

J. L. Chavez-Hurtado[1], J. E. Rayas-Sanchez[1], Z. Brito-Brito[1]
[1]ITESO - Universidad Jesuita de Guadalajara, Tlaquepaque, Jalisco, Mexico

We present a procedure to obtain reliable EM responses for a SIW interconnect with microstrip line transitions. The procedure focuses on two COMSOL® configuration settings: meshing size and simulation bounding box. Once both are properly configured, the implemented structure is tested by perturbing the simulation bounding box to ensure it has no effect on the EM responses.

Electromagnetic Well Logs Simulated with the COMSOL® RF Module on a Cluster - new

D. Swaminathan[1], G. Minerbo[1], K. Pathak[1]
[1]Drilling and Production Group, Schlumberger, Houston, TX, USA

Introduction Computer simulations are widely used for the interpretation and inversion of electromagnetic measurements in well logging. Until recently, simulated logs have been computed with approximate 1D or 2D models. By using the COMSOL® RF Module installed on a cluster, we show that a full 3D finite-element simulated log can be obtained within an acceptable turnaround time. Use of ...

Design of Tunable Metamaterial Operating Near 90 GHz

K. Tarnowski[1], W. Salejda[1]
[1]Institute of Physics, Wroclaw University of Technology, Wroclaw, Poland

Currently there is much interest in electromagnetic metamaterials [1-9]. In our work we have focused on design of tunable metamaterial which can be made within available technology. In proposed design we use metallic split-ring resonators and thin-wires (Figure 1). Moreover we have decided to introduce nematic liquid crystal layer in design to obtain tunability (Figure 2). One can control ...

Microwave Exposure System for In Vitro and In Vivo Studies - new

C. Nadovich[1, 2], W. D. Jemison[2], J. A. Stoute[3], C. Spadafora[4]
[1]Lafayette College, Easton, PA, USA
[2]Clarkson University, Potsdam, NY, USA
[3]Pennsylvania State University, Hershey, PA, USA
[4]INDICASAT AIP, Ciudad del Saber, Panama

A computer controlled microwave exposure system and specialized applicators were constructed for the purpose of facilitating accurate observations of microwave radiation effects on uninfected and infected biological tissue in vitro and in vivo under different electromagnetic modalities and exposure configuration. To address diverse requirements, three different applicators were developed: a ...

Quick Search