Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Passive Microsensor Based on LC Resonators for Substance Identification

D.A. Sanz Becerra[1], E.A. Unigarro Calpa[1], J. Osma[1], F. Segura[1]
[1]Universidad de los Andes, Bogotá, Colombia

A scheme for inductive wireless powering and readout of passive LC sensor is presented. The sensor’s inductor is designed as a planar square coil and is used as the power receiving component. The capacitor is connected directly to the inductor and it was designed as an interdigital capacitor. With a transmitting coil (coupling antenna), an electromagnetic field is generated which couples with ...

Design of Tunable Metamaterial Operating Near 90 GHz

K. Tarnowski[1], W. Salejda[1]
[1]Institute of Physics, Wroclaw University of Technology, Wroclaw, Poland

Currently there is much interest in electromagnetic metamaterials [1-9]. In our work we have focused on design of tunable metamaterial which can be made within available technology. In proposed design we use metallic split-ring resonators and thin-wires (Figure 1). Moreover we have decided to introduce nematic liquid crystal layer in design to obtain tunability (Figure 2). One can control ...

Three-Dimensional (3D) Modeling of Heat and Mass Transfer during Microwave Drying of Potatoes

H. Zhu[1][2], T. Gulati[2], A. K. Datta[2], K. Huang[1]
[1]Institute of Applied Electromagnetics, Sichuan University, Chengdu, China
[2]Department of Biological and Environment Engineering, Cornell University, Ithaca, NY, USA

Microwave drying of fruits and vegetables in a domestic oven has been found to result in large textural changes in the product such as puffing, crack formation and even burning due to the inhomogeneous heating of the microwaves. Microwave drying of potatoes is a complex interplay of mass, momentum and energy transport. Three phases are considered in the system: solid (skeleton), liquid (water) ...

COMSOL Multiphysics® Simulation of Chiral Molecule Interaction with Chiral Structures

I. Zabkov[1], V. Klimov[2], A. Pavlov[2], D. Guzatov[3]
[1]MIPT, Moscow, Russia
[2]Lebedev Physical Institute, Moscow, Russia
[3]Yanka Kupala Grodno State University, Grodno, Belarus

Influence of chiral objects on spontaneous emission of atoms and molecules is under attention nowadays. The problem of interaction of chiral molecules with one [1] or two chiral [2] spheres was solved analytically recently by our group. The analytical results however are very difficult and needed to be calculated carefully. We modify the RF Module of COMSOL Multiphysics® in order to simulate ...

CFD/Electromagnetics Interactions via Realistic Heat and Mass Transfer to Moist Substrates - new

G. Ruocco[1], M. V. De Bonis[2]
[1]Engineering College, University of Basilicata, Potenza, Italy
[2]I​nstitute of Food Science and Production, National Research Council, Bari, I​taly

Localized convection heat and mass transfer can be intensified and optimized by providing exposure to electromagnetic energy. Conjugate heat and mass transfer are configured by solving the momentum, heat and mass transfer simultaneously in both solid (substrate, comprising of a two-phase chemical species) and fluid (auxiliary air) phases. In this way the heat and mass fluxes vary seamlessly ...

Computational design and analysis of Microwave Tomography in Intracerebral Hemorrhage

Priyadarshini Natarajan [1], Rajkumar ElagiriRamalingam[1]
[1]Division of Biomedical Engineering, School of Biosciences and Technology, VIT University, Tamil Nadu, India

Intracerebral hemorrhage is a condition where a blood vessel in the brain ruptures and causes internal bleeding leading to hemorrhagic stroke. 800 in every 100,000 people suffer from stroke each year and it's one of the major causes of mortality worldwide. Diagnosis involves Neurological examination with MRI/CT scans which is costly and time consuming. Microwave Tomography (MWT) is proposed as a ...

Scattering of mm-Waves by Turbulent Structures in Magnetically Confined Fusion Plasmas

O. Chellaï [1], S. Alberti [1], I. Furno [1], T. Goodman [1], M. Baquero [1]
[1] Centre de Recherches en Physique des Plasmas, Ecole Polytechnique Fédérale de Lausanne, Suisse

In magnetically confined fusion devices, electron cyclotron resonance heating (80-170 GHz) is characterized by a local RF-power deposition at the electron cyclotron resonance [1]. A mm-wave RF Gaussian beam is launched from a dedicated antenna and propagates through the highly turbulent scrape-off layer (SOL) at the edge of the confined plasma. Turbulence in the SOL is characterized by ...

Designing and Simulating THz Guided Wave Devices Using Finite Element Techniques

L. M. Hayden[1], D. A. Sweigart[1]
[1]Department of Physics, University of Maryland Baltimore County, Baltimore, MD, USA

The generation of terahertz frequency radiation (0.1-10 THz) is an important technological goal due to the use of this non-ionizing radiation to penetrate a wide range of non-conducting materials. One outstanding problem has been the propagation of THz radiation in guided wave devices. Few studies on the construction of efficient THz waveguide devices have been performed. We designed and ...

Plasmonic Properties of Bimetal Nanoshell Cylinders and Spheres

K. Ehrhold[1], S. Christiansen[1,2], and U. Gösele[1]
[1]Max Planck Institute of Microstructure Physics, Halle, Germany,
[2]Institute of Photonic Technology, Jena, Germany

Plasmonics is a new branch of the fascinating field of photonics and develops concepts to quench light beyond the diffraction limit and enhance electromagnetic fields. These enhancements occur in metals as localized surface plasmon polaritons (LSP) a coupling of the surface density oscillations of the electron gas to the incident light. With threedimensional nano-structures of coinage metals ...

Chiral surface plasmon polaritons on metallic nanowires

S. Zhang
Institute of Physics CAS
Beijing
China

Chiral SPPs can be generated by linearly polarized light incident at the end of a nanowire, exciting a coherent superposition of three specific nanowire waveguide modes. Chirality is preserved in the emitted photons, creating a subwavelength ¼ wave plate.