Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Multiphysics Design of ESS-Bilbao Linac Accelerating Cavities Using COMSOL

J. L. Munoz, and I. Rodriguez
ESS-Bilbao
Bilbao, Spain

A proton linac drives particles using the electric field of a high power RF standing wave in a resonant cavity. The design of these cavities involve several aspects of multiphysics simulation, that have been accomplished using COMSOL. The first step consist on the geometric optimization of the cavities in order to have the correct frequency while maximizing some figures of merit. This task ...

Electromagnetic Environment Generated in a TEM Cell for Biological Dosimetry Applications

M. Morega and A. M. Morega
Politehnica University of Bucharest, Bucharest, Romania

The dosimetric analysis of the non-ionizing electromagnetic field (EMF) penetration in exposed biological material requires the existence and monitoring of a controlled testing environment.The practical solution for high frequency EMF exposure is the setting of the experiment in an anechoic chamber, or, more economically, in a TEM cell that is able to provide a reduced testing region with EMF ...

Modeling the Radiation of a Commercial Sensor, the Fish Fat Meter, in a Multilayer Biological Material

S. Clerjon
Centre INRA de Theix, St Genes Champanelle, France

The Fish Fat Meter sensor is used for in vivo measurement of intramuscular fat content in fishes. It is based on the propagation of a 2 GHz wave along a micro-strip line placed against the fish. It is used at INRA to select fat or lean fish in fish-farming studies. COMSOL Multiphysics has been used to perform 2D and 3D modeling in order to support recommendations to users of the Fish Fat Meter. ...

Mechanical Model of RF MEMS Capacitor Structures

R. Chatim[1]
[1]University of Kassel, Kassel, Germany

In order to design an RF MEMS based device, it is beneficial to have information concerning mechanical behavior. For model verification purpose, solution offered by simulation software equipped with predefined physics application is one valuable way to provide initial reference. To avoid unwanted particular total strain in RF MEMS structures, a compensation layer can be utilized. When the number ...

Opto-Asic, Photonische Kristalle

Ricklefs, U., Luo, H.
FH Giessen-Friedberg, FB EI

Mit FEMLAB 2.x und 3.1 wurden Voruntersuchungen zu zwei Anwendungen versucht. Im ersten Projekt sollte die Möglichkeit geklärt werden, FEMLAB für die Verhaltenssimulation integrierter ASIC-Photodioden einzusetzen und in der zweiten Anwendung sollten spezielle photonische Kristalle untersucht werden.

Complex K-Bands Calculation for Plasmonic Crystal Slabs by Means of Weak Formulation of Helmholtz's Eigenvalue Equation

G. Parisi[1], P. Zilio[1], F. Romanato[1]
[1]University of Padova, Padova, Italy

We present a Finite Element Method (FEM) to calculate the complex valued k(?) dispersion curves of a photonic crystal slab in presence of both dispersive and lossy materials. In particular the method can be exploited to study plasmonic crystal slabs. We adopt Perfectly Matched Layers (PMLs) in order to truncate the open boundaries of the model, including their related anisotropic permittivity and ...

FEM Study of Nano-structured Surface-relief Optical Data Storage

Kalavagunta, A.1, Neifeld, M.A.2
1 Vanderbilt University, Nashville, TN
2 Univerisity of Arizona, Tucson, AZ

We are studying the ability of subresolution optical structures to store data. We begin our study with surface relief structures. Because we are probing features whose sizes are much smaller than the wavelength of the readout light, retrieval of data from these structures requires near-field detection. The dimensions of the glass fill-in and the grooves of the above mentioned structure was ...

Finite Element Modeling of Electromagnetic Scattering for Microwave Breast Cancer Detection

R. Firoozabadi[1], and E.L. Miller[2]
[1]Airvana Inc., Chelmsford, MA, USA
[2]Tufts University, Medford, MA, USA

In this paper, COMSOL Multiphysics software is utilized as a finite element forward solver to obtain the electromagnetic fields at the receiving antennas while the breast is illuminated by one antenna in the array. Geometry consists of coronal slices of the 3-D breast. Simulations are done by a MATLAB code which runs COMSOL finite element solver and collects the data at the receiving antennas at ...

Multiphysics Analysis of Normal Conducting RF Cavities for High Intensity Proton Accelerators

M. Hassan[1], I. Gonin[1], T. Khabiboulline[1], V. Yakovlev[1]
[1]Fermi National Accelerator Laboratory, Batavia, IL, USA

Normal conducting cavities are typically used in the front end of proton accelerators to get the beam accelerated to velocities approximately a few tenths of the speed of light, where superconducting cavities can then be used to accelerate the beam to the speed of light. The warm part of a typical proton accelerator would contain a radio frequency quadrupole (RFQ) and several buncher cavities. ...

Resonances in Tapered Double-Port TEM Waveguides

J. Kaerst
HAWK, Fachhochschule Hildesheim/Holzminden/Göttingen, Germany

In this paper resonances in tapered double-port TEM waveguides are used as benchmark for simulations. FEM simulations with COMSOL Multiphysics® and simulations using generalised telegraphist's equations with MATLAB® are compared to ananalytical method capable of calculating the resonances of higher order modes. It is valid for tapered double-port TEM waveguides with constant ...

Quick Search