Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Finite Element Modeling of Electromagnetic Scattering for Microwave Breast Cancer Detection

R. Firoozabadi[1], and E.L. Miller[2]
[1]Airvana Inc., Chelmsford, MA, USA
[2]Tufts University, Medford, MA, USA

In this paper, COMSOL Multiphysics software is utilized as a finite element forward solver to obtain the electromagnetic fields at the receiving antennas while the breast is illuminated by one antenna in the array. Geometry consists of coronal slices of the 3-D breast. Simulations are done by a MATLAB code which runs COMSOL finite element solver and collects the data at the receiving antennas at ...

An Assessment of the Suitability of the Body and Adult Head Coils for Transmission during Paediatric Magnetic Resonance Imaging

G.R. Cook[1], M.J. Graves[1], F.J. Robb[2], D.J. Lomas[1]
[1]Department of Radiology, University of Cambridge, Cambridge, United Kingdom
[2]General Electric Healthcare Coils, Aurora, Ohio, USA

MRI offers many advantages over other modalities and its lack of ionizing radiation is important for children, but can be limited by the radio-frequency (RF) coils available. This work calculates Specific Absorption Rate (SAR) and homogeneity of the RF transmit field (B1+) when imaging infants in adult coils. Two birdcage-type coils were loaded by a tissue model and their B1+ homogeneities ...

Analysis of Transient Electromagnetic Dipole

J.C. Crompton[1], K.C. Koppenhoefer[1], and S.Y. Yushanov[1]
[1]AltaSim Technologies, LLC, Columbus, Ohio, USA

This paper presents the solution of a transient electromagnetic problem using COMSOL Multiphysics. The paper also presents a closed-form solution of a transient electromagnetic dipole. The computational solution compares well with a closed-form solution for this problem. This work implements Maxwell’s equations in the RF module and optimizes solver parameter settings to resolve the transient ...

Calculations of the FMR Spectrum in 1D Magnonic Crystals

M. Mruczkiewicz[1], M. Krawczyk[1], V.K. Sakharov[2], Yu. V. Khivintsev[2], Yu. A. Filimonov[2], S. A. Nikitov[3]
[1]Nanomaterials Physics Division, Faculty of Physics, Adam Mickiewicz University, Pozna?, Poland
[2]Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences (Saratov Branch), Saratov, Russia; Laboratory “Metamaterials”, Chernyshevsky Saratov State University, Saratov, Russia
[3]Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow, Russia; Laboratory “Metamaterials”, Chernyshevsky Saratov State University, Saratov, Russia

FMR spectra of the periodic microstructures (one-dimensional magnonic crystals, 1D MCs) were obtained using COMSOL with use partial differential equation interface. Results of these calculations were successfully compared with an experimental data for Damon-Eshbach (DE) and Backward-Volume (BV) geometries. The presented tool allows to analyze periodic structures with various geometries and ...

Study on Electromagnetic Waves in the Terahertz Region Using COMSOL Multiphysics

T. Nishida[1]
[1]Shinshu University, Matsumoto City, Nagano, Japan

Electromagnetic waves in the terahertz (THz) region may be useful for non-destructive imaging and biosensing technology. This presentation shows the example of our research aimed at the development of application in the THz region. The result of comparing the FDTD method and COMSOL Multiphysics is demonstrated in the investigation of metamaterial and the photoconductive antenna.

Multiphysics Analysis of Normal Conducting RF Cavities for High Intensity Proton Accelerators

M. Hassan[1], I. Gonin[1], T. Khabiboulline[1], V. Yakovlev[1]
[1]Fermi National Accelerator Laboratory, Batavia, IL, USA

Normal conducting cavities are typically used in the front end of proton accelerators to get the beam accelerated to velocities approximately a few tenths of the speed of light, where superconducting cavities can then be used to accelerate the beam to the speed of light. The warm part of a typical proton accelerator would contain a radio frequency quadrupole (RFQ) and several buncher cavities. ...

The Simulation of Motion of a Slider upon a Stator Due to Frictional Force Using COMSOL Multiphysics® Software - new

H. B. Nemade[1]
[1]Indian Institute of Technology Guwahati, Guwahati, Assam, India

The Surface Acoustic Wave (SAW) linear motor was studied which is developed utilizing the friction principle for driving. The principle says that, when a slider is placed on the Rayleigh waves generated on a stator, the slider moves in reverse direction of the wave due to friction between the stator and the slider. A LiNbO3 piezoelectric substrate is used as a stator where comb structured Al ...

Analysis of Electromagnetic Propagation for Evaluating the Dimensions of a Large Lossy Medium

A. Pellegrini[1] and F. Costa[1]
[1]ALTRAN Italia, Pisa, Italy

In this paper the propagation of a plane wave in a large lossy medium is presented. The investigated geometry consists in a wedgeshaped lossy dielectric embedded in a lossy material with different electromagnetic properties. The aim of the study is to determine the feasibility of a radar technique for measuring the length of the dielectric wedge. In order to address this problem and to evaluate ...

Thermo-Elastic Response of Cutaneous and Subcutaneous Tissues to Noninvasive Radiofrequency Heating

J. Jimenez-Lozano[1], P. Vacas-Jacques[1], W. Franco[1]
[1]Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA

Radiofrequency (RF) technology offers unique advantages for noninvasive selective heating of relatively large volumes of tissue. In this work, we present a mathematical model for selective non-invasive, non-ablative RF heating of cutaneous and subcutaneous tissue (with detailed fiber septa structures) including their thermo-elastic response. Our analysis shows that the fiber septa architecture ...

Analysis of Microwave Radiation for Heating

J. Crompton, S. Yushanov, L. Gritter, and K. Koppenhoefer
AltaSim Technologies, LLC.
Columbus, OH

Microwave heating is an important process for many commercial, industrial and household applications. In microwave heating applications, the energy is introduced directly into the volume of the material. As a consequence the quality of the process is highly dependent on the uniformity of the electromagnetic field distribution. Thus, developing a uniform electromagnetic field inside the ...

Quick Search