Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

A General Method for Solving Equations - The Dynamical Functional Particle Method

M. Gulliksson, and S. Edvardsson
Mid Sweden University, Sundsvall, Sweden

Given any equation L(u)=0, e.g. a partial differential equation, it can be considered to be the stationary solution of a time dependent equation (in fact, time need only to be fictitious time not real time). Our approach is to choose the time dependence in analogy with an oscillating particle system including damping in order to damp out the time derivatives and attain a stationary solution ...

The Effect of the Dispersion Term on Flux of a Fluid in Permeable Media

O. Toscanelli, and V. Colla
Scuola Superiore S. Anna
Pontedera, Italy

The flux of a fluid in permeable media can be modelled using a continuous. To link the real system with the continuous model is mandatory to realize a suitable average of the equations and of the variables. The dispersion term comes from this averaging but it is not only a mathematical product of the modelling. The dispersion is due to the intrinsic geometry of the permeable media that forces ...

Linking The Dimensions

A. Helfrich-Schkarbanenko[1], M. Mitschele[2], S. Ritterbusch[1], and V. Heuveline[1]
[1]Engineering Mathematics and Computing Lab (EMCL), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
[2]Institute for Analysis, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

We consider a 3D boundary value problem arising in electrostatics. The potential is stimulated by current sources placed on a cross-section S of the domain. In many applications it is sufficient to know the potential in S. So, one is interested in an appropriate 2D model taking into account that the solution depends on the dimension of the domain. The idea is to find a corresponding 2D ...

Smoothing the Path to Simulation-Led Device Design

B. Pryor, and R. Pryor
Pryor Knowledge Systems
Bloomfield Hills, MI

Using modeling software such as COMSOL Multiphysics during the design phase, an approach called “simulation-led design”, allows ideas to be both inspired and validated by the use of simulations. Then, using simulations after the product is designed can shorten the prototype-testing portion of the development process and reduce its cost. This paper provides specifics on the nature of the ...

Dynamic Simulation of Bone Morphogenetic Protein Patterning in a 3D Finite-Element Model of the Danio Rerio Embryo

D. Umulis, and S. Lee
Purdue University
West Lafayette, IN

Zebrafish development of the dorsoventral axis relies on the spatiotemporal distribution of Bone Morphogenetic Protein (BMP) signaling, which is regulated by numerous secreted molecules such as Tolloid, Sizzled, and Chordin. The rich dorsal/ventral patterning network must achieve both spatial precision in the patterning of downstream targets and confernspatial precision at distinct time points in ...

Second Order Drift Forces on "Offshore" Wave Energy Converters

L. Martinelli[1], A. Lamberti[1], and P. Ruol[2]

[1]DISTART Idraulica, Università di Bologna, Bologna, Italy
[2]IMAGE, Università di Padova, Padova, Italy

Objective of this contribution is to present a procedure for evaluating second order drift forces on floating bodies, often the most important loading component for mooring design, in case of high waves propagating in relatively shallow water depths. The non linearity associated to this condition, which is typical of installations involving wave energy converters, makes this problem particularly ...

Computation of Three-Dimensional Electromagnetic Fields for an Augmented Reality Environment

A. Buchau, and W. Rucker
Institut für Theorie der Elektrotechnik, Universität Stuttgart, Germany

Augmented reality is predestined for visualization of electromagnetic fields in air or inside transparent matter. Real existing objects are studied and invisible electromagnetic fields are added as virtual objects. Hence, experts as well as students are able to connect electromagnetic fields easily with studied objects. They can concentrate on physical effects instead on reading figures. Here, an ...

FEMLAB as a general tool to investigate the basic laws of physics

Bräuer, K.
Universität Tübingen, Inst. f. Theoretische Physik, Tübingen

The common basis of physical laws is the continuity of the action field. It implies Structural mechanics, Hydrodynamics, Quantum mechanics, Electrodynamics and the self-organisation of matter. A general tool to investigate all the basic equations is FEMLAB. In academic training it allows to take the concentration away from the manifold of mathematical methods of solutions and draw it to the real ...

Handling Tessellated Free Shape Objects with a Morphing Mesh Procedure in COMSOL Multiphysics®

P. Franciosa[1] and S. Gerbino[2]
[1]Faculty of Engineering, University of Naples Federico II, Napoli, Italy
[2]Faculty of Engineering, University of Molise, Campobasso, Italy

Tessellated models are more and more used in several engineering fields. The need to use such models to quickly perform computer simulations related to coupled physical phenomena, implies the use of dedicated software, allowing to solve, into an integrated environment, multiphysics problems. In the present work, COMSOL Multiphysics® has been used and its ability to handle tessellated models ...

Optimal Control Problem for Unsteady Heat Conduction Equation

M. Hashiguchi
Keisoku Engineering System Co., Ltd., Tokyo, Japan

The present paper constructs optimal control problem for unsteady heat conduction equation and shows a method to adjust the numerical solution of temperature to prescribed objective temperature. The time dependence of the boundary heat flux is parameterized and determined by using optimization method given here. The system of equations are solved by using COMSOL Multiphysics. It was found that ...

Quick Search