Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Comparison between COMSOL and RFSP-IST for a 2-D Benchmark Problem

G. Gomes
Atomic Energy of Canada Limited, Mississauga, Ontario, Canada

RFSP-IST (Reactor Fueling Simulation Program) is a computer code used for the full-core neutronics design and analysis of CANDU® reactors. RFSP-IST calculates the static flux and power distributions in the core by solving the neutron diffusion equation in two energy groups. For validation purposes, results from RFSP-IST are often compared with those from other codes. This paper documents the ...

Multiphysics Simulations in Complex 3D Geometry of the High Flux Isotope Reactor Fuel Elements using COMSOL

J. Freels, and P. Jain
Oak Ridge National Laboratory
Oak Ridge, TN

A current research and development project is ongoing to convert the operating High Flux Isotope Reactor (HFIR) of Oak Ridge National Laboratory (ORNL) from highly-enriched uranium (HEU U3-O8) fuel to low-enriched uranium (LEU U-Mo) fuel. Because LEU HFIR-specific testing and experiments will be limited, we are relying on COMSOL to provide the needed multiphysics simulation capability to validate ...

Shape Optimization of Electric and Magnetic System using Level Set Technique and Sensitivity Analysis

Y. Sun Kim, A. Weddemann, J. Jadidian, S. Khushrushahi, and M. Zahn
Dept. of Electrical Engineering and Computer Science
Cambridge, MA

The classical optimization method has been applied to many design problems for electromagnetic systems. One of its major difficulties is related to meshing problems arising from shape modifications. In order to circumvent these kinds of technical difficulties with moving mesh problems, several researches have tried to formulate shape optimization with fixed mesh analyses based on fixed grid ...

Design of MEMS based Polymer Microphone for Hearing Aid Application

V. S. Nagaraja[1], Ramanuja H. S.[1], Deepak K[1], S. L. Pinjare[1]
[1]Electronics and Communication Engineering, Nitte Meenakshi Institute of Technology, Bangalore, Karnataka, India

In this work, a MEMS based condenser microphone [1,2] using Polyimide as the diaphragm has been designed. The microphone structure has a backplate placed on top of the diaphragm. The backplate and the diaphragm are made up of polyimide. The two polyimide plates are separated by air gap which is achieved by using Aluminium as a sacrificial layer in between, which is etched away to create the air ...

Water Quality Model for Brewster Lake

Z. Aljobeh[1], G. Argueta[1]
[1]Valparaiso University, Valparaiso, IN, USA

A numerical model was developed to make spatial and temporal predictions of the water quality for Brewster Lake, located in southwestern Michigan. The model considers the hydrodynamics of the lake, hydrologic conditions, physical, chemical and biochemical processes that take place in the lake, and nutrient loadings from the surrounding watershed. Physical, chemical, and biochemical data collected ...

On the Formation of a Sticking Layer on the Bearing during Thin–Section Aluminium Extrusion

X. Ma[1], M.B. de Rooij[2], and D.J. Schipper[2]

[1]Materials Innovation Institute, Enschede, The Netherlands
[2]University of Twente, Enschede, The Netherlands

This paper describes the use of COMSOL Multiphysics® to determine the shear layer thickness in thin–section aluminum extrusion, based on the minimum work criterion. The studied two aluminum alloys are AA 6063 and AA 7020. The results show that a continuous shear layer featuring shear localization due to localized thermal softening is not possible to form under typical thin–section ...

Second Order Drift Forces on "Offshore" Wave Energy Converters

L. Martinelli[1], A. Lamberti[1], and P. Ruol[2]

[1]DISTART Idraulica, Università di Bologna, Bologna, Italy
[2]IMAGE, Università di Padova, Padova, Italy

Objective of this contribution is to present a procedure for evaluating second order drift forces on floating bodies, often the most important loading component for mooring design, in case of high waves propagating in relatively shallow water depths. The non linearity associated to this condition, which is typical of installations involving wave energy converters, makes this problem particularly ...

Linear LS Parameter Estimation of Nonlinear Distribute Finite Element Models

E. Sparacino[1], D. Madeo[1], and C. Mocenni[1]

[1]Dipartimento di Ingegneria dell’Informazione, Università di Siena, Siena, Italy

This work concerns the development of a new direct parameter identification procedure for a class of nonlinear reaction- diffusion equations. We assume to know the model equations with the exception of a set of constant parameters, such as diffusivity or reaction term parameters. Using the Finite Element Method we are able to transform the original partial differential equation into a set of ...

Virtual Prototyping

B. Engquist
University of Texas, Austin

During the past 50 years, Computational Science has developed as its own branch of mathematics. This development was mainly initiated by the progress of modern computers. Todays modeling of physical phenomena must not only account for the computational time but also the time engineers spend on setting up the computation. This in turn has introduced new fields, such as human interaction, to ...

Space-charge-limited Current in the Quantum Regime by Solving the Schroedinger-Poisson Equation

M.-C. Lin
NanoScience Simulation Laboratory, Department of Physics, Fu Jen Catholic University, Taipei County, Taiwan

The Child-Langmuir law gives the maximum electron current, known as the space-charge-limited current, which arises because the space charge in the diode presents a potential barrier to the incident electrons. While there are modifications due to geometrical and relativistic effects, the limited current remains a fundamental quantity characterizing the beam-gap interaction. In the research of ...

Quick Search