Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Double Pipe Heat Exchanger Modelling - COMSOL Uses in Undergraduate Education

L. Desgrosseilliers, and D. Groulx
Mechanical Engineering
Dalhousie University
Halifax, NS

A cornerstone of Chemical and Mechanical Engineering undergraduate programs the world over is the experimental and theoretical study of heat exchange. Graduating engineering students gain some appreciation in their lab course by comparing empirical correlations combined with the thermodynamics of heat exchange with the real operation of a counter-current, double pipe, single-phase heat exchanger.

Simulation Organogenesis in COMSOL: Deforming and Interacting Domains

D. Iber[1], D. Menshykau[1]
[1]D-BSSE, ETH Zurich, Basel, Switzerland

Organogenesis is a tightly regulated process that has been studied experimentally for decades. We are developing mechanistic models for the morphogenesis of limbs, lungs, and kidneys with a view to integrate available knowledge and to better understand the underlying regulatory logic. Organ size changes dramatically during development, and tissues are composed of several layers that may expand ...

Nondestructive Testing of Composites Using Model Based Design

E. Nesvijski[1]

There is a practical interest among composite materials manufacturers to high-speed accurate non-destructive evaluation (NDE) technology for voids inspection when these voids are natural components of such complex structures like resin insulated layer of double-sided copper-clad laminates. Model based design (MBD) of NDE system is one of principal solutions for voids inspection in such composites ...

On the Convergence Order of COMSOL Solutions

A. Bradji1, and E. Holzbecher2
1Charles University, Prague, Czech Republic
2Weierstrass Institute for Applied Analysis and Stochastics WIAS, Berlin, Germany

The convergence of numerical solutions is mainly determined by the convergence order, which quantifies the improvement of the solution when the mesh is refined. In this paper we examine various differential equations and the convergence behavior of their COMSOL Finite Element solutions. The numerically observed convergence rates are compared with theoretical results, as far as these are ...

Large Scale Simulation on Clusters Using COMSOL

D. Pepper[1], X. Wang[2], S. Senator[3], J. Lombardo[4], and D. Carrington[5]
[5]T-3 LANL

Darrell Pepper is Professor of Mechanical Engineering and Director of the Nevada Center for Advanced Computational Methods at the University of Nevada Las Vegas (UNLV). He was recently appointed Distinguished Visiting Professor at the US Air Force Academy where he will be in residence until May 2012. In 2004, Dr. Pepper was appointed ASME Congressional Fellow and worked as a senior legislative ...

Design of Pressure Measuring Cells Using the Unified Material Law

P. Aguirre[1], F. Figueroa[1]
[1]Sensor Technik Wiedemann GmbH, Kaufbeuren, Bayern, Germany

Pressure Sensors are widely used in the automotive industry. Their main use is the dynamic monitoring of pressure inside combustion engines. To achieve a good signal accuracy, the design of pressure sensors can be improved with FEM calculations of stress and strains on the measuring cell depending on their geometry and material properties. The geometry is adapted according to a special ...

Early Stage Melt Ejection in Laser Percussion Drilling

T. Eppes[1]
[1]University of Hartford, Hartford, CT, USA

Laser percussion drilling is widely used in the aerospace industry to produce cooling holes in jet engine components. This process is a thermal, contact-free process which involves firing a sequence of focused optical pulses onto a target material [1-4]. During each optical pulse, the central portion of the target area heats to a liquid then vapor state where the expanding gas produces a recoil ...

Load Cell Design Using COMSOL Multiphysics

A. Marchidan[1], T. Sullivan[1], J. Palladino[1]
[1]Trinity College, Hartford, CT, USA

COMSOL Multiphysics was used to design a binocular load cell. A three-dimensional linear solid model of the load cell spring element was studied to quantify the high-strain regions under loading conditions. The load cell was fabricated from 6061 aluminum, and general purpose Constantin alloy strain gages were installed at the four high-strain regions of the spring element. The four gages were ...

Undergraduate Studies of Supersonic Flow from a Converging-Diverging Nozzle

K. Stein[1], N. Gessner[1], R. Peterson[1], A. Wiedmann[1]
[1]Department of Physics, Bethel University, St. Paul, MN, USA

Undergraduate studies are carried out to examine the supersonic flow from an axisymmetric converging-diverging nozzle. Flow in the nozzle is initiated by the rupture of a diaphragm that is positioned between the nozzle and a 1-gallon pressurized air tank. Simulations are carried out in COMSOL Multiphysics® for unsteady, axisymmetric flow with the High Mach Number interface of the CFD Module. ...

Dynamic Characterization and Mechanical Simulation of Cantilevers for Electromechanical Vibration Energy Harvesting

N. Alcheick[1], H. Nesser[1], H. Debeda[1], C. Ayela[1], I. Dufour [1]
[1]Univ. Bordeaux, IMS Lab, Pessac, France

Energy harvesting from ambient vibrations has become an interesting topic for powering wireless sensor networks. Resonant microdevices based on MEMS have become of central importance at low frequency. The power produced at resonance is at least one order of magnitude larger than off frequency power since the largest strain is obtained at resonance. In order to obtain large strain for efficient ...

Quick Search