Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Multigrid Implementation in COMSOL Multiphysics® - Comparison of Theory and Practice

W. Joppich[1]
[1]University of Applied Sciences, Sankt Augustin, Germany

Multigrid methods (MG) belong to the fastest solvers for partial differential equations. The key for this is an appropriate composition of the algorithmic components [1,2,4]. The multigrid solver implemented in COMSOL Multiphysics® is analyzed with respect to components and with respect to its numerical properties. Of special interest is the question whether solving selected model problems shows ...

Looking for the Origin of Power Laws in Electric Field Assisted Tunneling

H. Cabrera[1], D.A. Zanin[1], L.G. De Pietro[1], A. Vindigni[1], U. Ramsperger[1], D. Pescia[1]
[1]Laboratory for Solid State Physics, ETH Zurich, Zurich, Switzerland

A sharp tip approached perpendicular to a conducting surface at subnanometer distances and biased with a small voltage builds a junction across which electrons can be transferred from the tip apex to the nearest surface atom by direct quantum mechanical tunneling. Such a junction is used e.g. in Scanning Tunneling Microscopy (STM). When the distance d between tip and collector is increased ...

Several Benchmarks for Heat Transfer Problems in COMSOL Multiphysics®

S. Titarenko[1]
[1]University of Leeds, Leeds, United Kingdom

Nowadays all branches in modern science and industry tend to solve ever complicating problems. As the result the computational time increases considerably and it become very important to reduce the processing time and use available resources more efficiently. Parallelizing problem proves itself as efficient way to overcome the described problem. In the poster we compare different methods of ...

Modeling of Chloride Transport in Cracked Concrete: a 3-D Image–Based Microstructure Simulation

Y. Lu[1], E. Garboczi[1], D. Bentz[1]
[1]National Institute of Standards and Technology, Gaithersburg, MD, USA

The prediction of concrete materials service life is not easy, because the complex heterogeneous microstructure and the random nature of concrete materials. Study the presence of cracks in concrete and their effect on coupled reaction and transport are of great interest in civil engineering. Cracks with different widths and depths will reduce the cover thickness and accelerate the migration of ...

COMSOL Multiphysics® Simulations of Cracking in Point Loaded Masonry with Randomly Distributed Material Properties

A.T. Vermeltfoort[1], A.W.M. van Schijndel[1]
[1]Eindhoven University of Technology, Eindhoven, The Netherlands

This paper describes COMSOL Multiphysics® simulations of the stress and crack development in the area where a masonry wall supports a floor. In these simulations one of the main material properties of calcium silicate, its E-value, was assigned randomly to the finite elements of the modeled specimen. Calcium silicate is a frequently used building material with a relatively brittle fracture ...

Geometric Modeling and Numerical Simulation of Airfoil Shapes Using Integrated MATLAB® and COMSOL Multiphysics

A. Safari[1], H. Lemu G.[1], H. Severson[1]
[1]University of Stavanger, Stavanger, Norway

This paper proposes a framework for an efficient integration between geometric modeling program and analysis tool for a coming automated aerodynamic design optimization mission. This demand can be addressed by using both in-house codes and commercial software which have the good ability of live-link and efficient integration. In this study, the mathematical modeling of a turbomachinery airfoil ...

Modeling of Active Infrared Thermography for Defect Detection in Concrete Structures

S. Carcangiu[1], B. Cannas[1], G. Concu[2], N. Trulli[3]
[1]Department of Electric and Electronic Engineering, University of Cagliari, Cagliari, Italy
[2]Department of Civil Engineering, Environmental and Architecture, University of Cagliari, Cagliari, Italy
[3]Department of Architecture and Planning, University of Sassari, Alghero, Italy

An experimental program has been developed, with the purpose of evaluating the reliability in building diagnosis and characterization of an integrated analysis of several parameters related to heat transfer process through the building material. The Infrared Thermography Technique (IRT) has been applied. Experimental measurements have been carried out on a concrete structure with an inside ...

Moisture Risks in Multi-layered Walls - Comparison of COMSOL Multiphysics® and WUFI®PLUS Models with Experimental Results

A. Ozolins[1], A. Jakovics[1]
[1]Laboratory for Mathematical Modelling of Technological and Environmental Processes, Riga, Latvia

Moisture can cause serious damages in different building components therefore the heat and moisture calculation in building constructions are important tasks. In the current paper, two different multi-layered walls, mainly consisted of wooden materials and mineral wool, are analyzed. Risks of mould growth under Latvian climate conditions are estimated using 3 different approaches: experimental ...

Ammonia Removal From Water by a Liquid-Liquid Membrane Contactor Under a Closed Loop Regime

E. Licon[1], S. Casas[1], A. Alcaraz[1], J.L. Cortina[1], C. Valderrama[1]
[1]Universitat Politécnica de Catalunya, Barcelona, Spain

Ammonia separation from water by membrane contactor was simulated on transient state and compared with experimental data. Aqueous low concentrated solution of ammonium with high pH has been pumped inside the hydrophobic hollow fibers, acid solution in the outside part. The system is in closed loop configuration. In order to simulate the separation process, equations were developed considering ...

Simulation and Performance Analysis of Nanowire Design with Different Variants

Boopathi S[1], Ms.E.Malar[1], Deepan Chakravarthi P[1]
[1]Department of Biomedical Engineering, PSG College of Technology, Coimbatore, Tamil Nadu, India

This paper deals with an integrated numerical and experimental analysis work aiming at the investigation of the thermal stress on nanowires in electronic gadgets especially computers and mobile phones. The comparative study of the nanowires are analyzed through the Thermal Stress physics using different variants such as Cu, Al, ZnO, Si(c), SiO2 which can be used in sensors, solar cells, LCD, ...

Quick Search