Quick Search

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Fluid-Structure Interaction Analysis of a Peristaltic Pump

N. Elabbasi, J. Bergstrom, and S. Brown
Veryst Engineering, LLC.
Needham, MA

Peristaltic pumping is an inherently nonlinear multiphysics problem where the deformation of the tube and the pumped fluid are strongly coupled. We used COMSOL Multiphysics to investigate the performance of a 180 degree rotary peristaltic pump with two metallic rollers, and an elastomeric tube pumping a viscous Newtonian fluid. The model captures the peristaltic flow, the flow fluctuations ...

Parametric Study of Polyimide - Lead Zirconate Titanate Thin Film Cantilevers for Transducer Applications

A. Arevalo[1], I.G. Foulds[1]
[1]King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia

The simulation of the piezoelectric actuation of the micro-cantilever is presented. Lead Zirconate Titanate (PZT) was chosen for the device fabrication design, due to its thin film processing flexibility. Four layers compose the cantilever structures presented in this work: PZT (piezoelectric material), Platinum (electrodes) and Zirconium Oxide as the buffer layer for the PZT film and polyimide ...

Small Scale Yielding Model for Fracture Mechanics - new

K. C. Koppenhoefer[1], J. Thomas[1], J. S. Crompton[1]
[1]AltaSim Technologies, LLC., Columbus, OH, USA

Computational tools based on the finite element method have been used extensively to develop solutions for elastic and elastic-plastic fracture mechanics problems. This work uses a small-scale yielding model to compare results developed from COMSOL Multiphysics® with another finite element modeling package and analytical solutions. Analysis are conducted for elastic, and elastic-plastic ...

Analysis of 3-D Printed Structural Components for Cube Satellites - new

C. Herzfeld[1]
[1]SPAWAR Systems Center (SSC) ATLANTIC, Charleston, SC, USA

Additive manufacturing uses 3D printing to build physical parts from CAD-based designs. The technology includes fused deposition modeling (FDM) and selective laser sintering (SLS) methods. 3-D printing is of particular interest for smaller, one-of-a-kind, customizable products. A cube satellite (CubeSat) containing fiber reinforced SLS parts has been successfully launched (Ref 1). Lower ...

A Computational Approach for Simulating p-Type Silicon Piezoresistor Using Four Point Bending Setup

T.H. Tan[1], S.J.N. Mitchell[1], D.W. McNeill[1], H. Wadsworth[2], S. Strahan[2]
[1]Queen's University Belfast, Belfast, United Kingdom
[2]Schrader Electronics Ltd, Antrim, United Kingdom

The piezoresistance effect is defined as change in resistance due to applied stress. Silicon has a relatively large piezoresistance effect which has been known since 1954. A four point bending setup is proposed and designed to analyze the piezoresistance effect in p-type silicon. This setup is used to apply uniform and uniaxial stress along the crystal direction. The main aim of this work is to ...

Finite Element Modeling of a Pulsed Spiral Coil Electromagnetic Acoustic Transducer (EMAT) for the Testing of Plates

R. Dhayalan[1], A. Kumar[2], B. Purnachandra Rao[3], T. Jayakumar[2]
[1]Metallurgy and Material Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603 102, TN, India
[2]Nondestructive Evaluation Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603 102, TN, India
[3]Ultrasonic Measurements Section, Nondestructive Evaluation Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603 102, TN, India

This paper presents numerical simulation of plate wave modes in thin stainless steel plates using a racetrack spiral coil electromagnetic acoustic transducer (EMAT), which works under the principle of acousto-elastic effect, called Lorentz force mechanism. EMATs are useful for non-contact ultrasonic nondestructive testing (NDT) of metallic materials for detecting defects and measuring thickness. ...

Design and Simulation of 3D MEMS Piezoelectric Gyroscope using COMSOL Multiphysics®

T.Madhuranath[1], R.Praharsha[1], Dr.K.Srinivasa Rao[1]
[1]Lakireddy Bali Reddy College of Engineering, Mylavaram, Andhra Pradesh, India

MEMS is the leading technology which combines both electronic and mechanical devices on a single microchip. Tracing the position of the object is an important problem in engineering. This can be addressed by Gyroscopes. These sensors are used to find orientation and angular velocity. This paper focuses on 3D MEMS Piezoelectric Gyroscope. COMSOL Multiphysics® is used for designing and ...

Thermal and Material Flow Modelling of Friction Stir Welding Using COMSOL

H. Schmidt[1,2], and J. Hattel[1]
[1]Technical University of Denmark, Kgs. Lyngby, Denmark
[2]HBS Engineering, Frederiksberg, Denmark

Two friction stir welding models are presented – a global thermal model using the temperature dependent heat source and a local material flow and heat generation model allowing for detailed investigation of different contact conditions. The two models are coupled into a larger local-global model. The flow model includes frictional dissipation from the contact between the work piece and the ...

Failure Stress Analysis of Fiber Reinforced of Composite Laminates under Uniaxial/Biaxial Loading

Z. Hasan[1], F. Darwish[2], and S. Al-Absi[2]
[1]Texas A&M University, College Station, TX, USA
[2]Jordan University of Science and Technology, Irbid, Jordan

The main objective of the present work is to perform stress analysis on composite laminates under unaxial/biaxial loading to serve as a preliminary data for test verification. A detailed calculation based on the Classical Lamination Theory was performed for a laminate. The material used was carbon/epoxy applying a pure uniaxial load followed by a biaxial load. It was observed that the failure ...

Fluid-Structure Interaction Modeling of High-Aspect Ratio Nuclear Fuel Plates Using COMSOL Multiphysics®

F. Curtis[1], K. Ekici[1], J. D. Freels[2]
[1]The University of Tennessee, Knoxville, TN, USA
[2]Oak Ridge National Laboratory, Oak Ridge, TN, USA

The High Flux Isotope Reactor at the Oak Ridge National Lab is in the research stage of converting its fuel from high-enriched uranium to low-enriched uranium. One of the areas being explored is the fluid-structure interaction phenomenon due to the interaction of thin fuel plates (50 mils thickness) and the cooling fluid (water). Detailed computational simulations have only recently become ...