Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Development and Production of a Box for Storage and Shipping of HDIs in the Upgrade of the CMS Experiment

F. Noto[1], S. Costa[2], N. Giudice[2], F. Librizzi[3], A. Rapicavoli[2], M.A. Saizu[4], V. Sparti[3]
[1]Instituto Nazionale Fisica Nucleare, Sezione di Catania, Catania, Italy; Dipartimento di Fisica ed Astronomia, Università di Catania, Catania, Italy
[2] Dipartimento di Fisica ed Astronomia, Instituto Nazionale Fisica Nucleare, Sezione di Catania, Catania, Italy; Università di Catania, Catania, Italy
[3]Instituto Nazionale Fisica Nucleare - Sezione di Catania, Catania, Italy
[4]Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania

The Large Hadron Collider at CERN has begun operations at 7 TeV center of mass energy. CERN plans to run at this energy until the end of 2012 with the goal of providing an integrated luminosity of a few fb?¹ to the CMS and ATLAS experiments. The LHC will then shut down for 1.5 to 2 years to make the revisions necessary to run at ~14 TeV. Operation resumes in 2014. In 2017/18, there will be ...

Structural Mechanics for Real Geometry of Basalt Woven Composites

J. Salacova[1]
[1]Technical university of Liberec, Department of Material Engineering, Liberec, Czech Republic

Woven composites with basalt reinforcement plain 1x1 are examined to define structural mechanics. Woven composites were created by the prepreg technology, 8 layers of plain-weave basalt fabrics were saturated by the precursor, polysiloxane matrix Lukosil®, and joint pressed during temperatures of 200°C and 600°C. The yarns consist of 8000 fibres assembled without twisting. Voids complete entire ...

Stress Field Simulation for Quantitative Ultrasound Elasticity Imaging

L. Yuan[1] and P.C. Pedersen[1]
[1]Department of Electrical and Computer Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA

Finite element models using COMSOL Multiphysics and MATLAB were developed to solve the problem of stress distribution interior homogeneous, isotropic, incompressible elastic solid material under known vertical external compression with a rectangular contact surface. Moreover, comparison between these results and analytical solutions was used to further validate that stress drops off with ...

Numerical Implementation Of A Multivariable Thermomechanical Model For Unsaturated Bentonite

V-M. Pulkkanen, and M. Olin
VTT Technical Research Centre of Finland, Espoo, Finland

A compacted bentonite clay buffer is planned to be used as a part of the engineered barrier system in the KBS-3 concept for the disposal of spent nuclear fuel. Simulations together with experimental studies are needed to ensure that bentonite fulfills its safety functions in the concept. In this paper, one type of bentonite model, namely a thermomechanical model developed by Jussila, is ...

Particle Focusing Optimization and Stress Analysis of a Magnetic Horn

S. di Luise[1], A. Rubbia[2]
[1]Swiss Federal Institute of Technology, ETH, Zurich, Switzerland and CERN European Organization for Nuclear Research, Geneva, Switzerland
[2]Swiss Federal Institute of Technology, ETH, Zurich, Switzerland

A neutrino oscillation experiment aims to the observation of the transformation of a neutrino of a given flavour into a neutrino of a different flavour. A beam of neutrinos is produced through the decay of charged pions which in turn are produced in the collision of high energy accelerated protons impinging on a thick target. A series of magnetic horns is used to focus charged particles produced ...

3D Multiphysics Analyses to Support Low Enriched Uranium (LEU) Conversion of HFIR - new

P. K. Jain[1], J. D. Freels[1]
[1]Oak Ridge National Laboratory, Oak Ridge, TN, USA

Engineering design studies of the feasibility of conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium to low-enriched uranium (LEU) fuel are ongoing at Oak Ridge National Laboratory as part of an effort sponsored by the U.S. Department of Energy’s Global Threat Reduction Initiative Reduced Enrichment for Research and Test Reactors program. COMSOL Multiphysics® models are ...

Study of the Process, Design, and Operating Parameters Effect on the Efficiency of the Process Mill - new

A. K. Farouk[1]
[1]Department of Mathematics & Natural Science, University of Stavanger, Sandnes, Rogaland, Norway

This study is to investigate the velocity pattern and the velocity magnitude of the cuttings that is being processed in the process mill as a result of the rotating hammers. The process mill consists of a horizontal cylindrical shell equipped with renewable liners and rotating hammers for milling of drill cuttings. An F.E model of the process mill was constructed using dimensions similar to ...

Numerical modelling of the damage potential of climate variations to a historic wooden cabinet

Z. Huijbregts, H. Schellen, and J. van Schijndel
Department of the Built Environment
Eindhoven University of Technology
Eindhoven, The Netherlands

The two wooden cabinets of Jan van Mekeren that are located in Amerongen Castle show comparable wood damage; in particular large cracks in the cabinet doors are clearly noticeable. It is assumed that these cracks were caused by bad indoor climate conditions in the castle. Combined computational modelling of the indoor climate conditions in the castle and the hygroscopic and mechanical ...

Numerical Experiments for Thermally-induced Bending of Nematic Elastomers with Hybrid Alignment

L. Teresi[1], and A. DeSimone[2]
[1]LaMS - Modeling & Simulation Lab, University Roma Tre, Roma, Italy
[2]SISSA - International School for Advanced Studies, Trieste, Italy

We deal with Liquid Crystal Elastomers (LCEs) having hybrid alignment (HNEs), that is, fabricated with a given non-homogeneous nematic orientation. For such a materials, permanent distortions induced by deswelling can be compensated by those resulting from cooling below the transition temperature, thus yielding the possibility of producing temperature-driven actuators. Here, we simulate the ...

Rheological and Topographical Controls on Deformation Due to a Shallow Magma Reservoir - new

J. H. Johnson[1]
[1]University of Bristol School of Earth Sciences, Bristol, UK

The use of high-resolution topography in the finite element model demonstrates that deformation from a shallow pressure source can be dramatically affected by overlying relief, not only in magnitude, but also in azimuth. This result is significant as it allows traditionally anomalous data to be evenly weighted during inversions for magma reservoir parameters. The result that surface ...