Quick Search

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Chemical Leachate Simulation for Environmental Safety Evaluation in Civil Engineering Applications of Construction Byproducts

H. Ishimori
National Institute for Environmental Studies, Tsukuba, Japan

This presentation shows a numerical simulation model of the chemical leachate process from construction byproducts and the chemical transport process with geochemical reactions for their environmental safety evaluation.

Numerical Simulation of a Rotary Desiccant Wheel

G. Diglio[1], P. Bareschino[1], G. Angrisani[1], M. Sasso[1], F. Pepe[1]
[1]UniversitĂ  degli Studi del Sannio, Benevento, Italy

The core unit of desiccant cooling systems is a dehumidifying device, in most cases a wheel made of inert material coated with an adsorbent (silica gel in the present work). Two sections can be identified: air to be dehumidified was passed through the process section, while in the regeneration section water vapour was removed from the adsorbent by means of dry and hot air. Solving gas-phase ...

Theoretical and Practical Approach for Transdermal Drug Delivery using Microneedle for Successful Skin Penetration

Jeevan J.Mahakud[1], Ziaur Reheman[2]
[1]Department of electronics and Communication engineering, Institute of technical education and research, Bhubaneswar, Odisha, India
[2]Department of electronics and instrumentation engineering, Institute of technical education and research, Bhubaneswar, Odisha, India

With the advent of MEMS, transdermal drug delivery has been developed to increase skin permeability for drug transport. Various microneedle structures have been analyzed theoretically as well as through simulation using COMSOL Multiphysics®. Then computational fluid dynamics has been presented in order to study the behavior of the fluid flow inside the microneedle cavity. In this report, the ...

Modeling of High-Temperature Ceramic Membranes for Oxygen Separation

J.M. Gozálvez-Zafrilla[1], J.M. Serra[2], and A. Santafé-Moros[1]

[1]Chemical and Nuclear Engineering Depart., Universidad Politécnica de Valencia, Valencia, Spain
[2]Instituto de Tecnología Química, Valencia, Spain

Oxygen transfer through ceramic membranes at high-temperature can substantially reduce costs respect to conventional separation methods. With the aim to improve the determination of the properties of the ceramic materials, a lab-scale permeation set-up was modeled using the Chemical Engineering Module of COMSOL Multiphysics®. The solution required the coupling of three domains. Gas flow was ...

A CFD Analysis of the Operating Conditions of a Multitube Pd Membrane for H2 Purification - new

B. Castro-Dominguez[1], R. Ma[1], A. G. Dixon[1], Y. H. Ma[1]
[1]Chemical Engineering Department, Worcester Polytechnic Institute, Worcester, MA, USA

The optimization of operating conditions in multitube membrane modules is highly complex. The multiple physics and irregular geometries involved create a challenge for predicting their behavior. This work analyzes the performance of H2 purification through a module containing seven membranes. Using experimental parameters, a 3-D model was devised, specifying the membrane as a reacting boundary ...

Numerical Simulation of Oil Recovery by Polymer Injection using COMSOL

J. Wegner[1], L. Ganzer[1]
[1]Clausthal University of Technology, Clausthal, Germany

In this paper we used COMSOL Multiphysics to model basic physico-chemical effects relevant in polymer enhanced oil recovery (EOR) such as non-Newtonian rheology of the displacing phase, permeability reduction, adsorption and salinity effects. COMSOL\'s PDE interface as well as Species Transport in Porous Media interface was used for solving the underlying equations. The validity of the ...

Miscible Viscous Fingering of Pushed Versus Pulled Interface

S. Pramanik[1], M. Mishra[1]
[1]Indian Institute of Technology Ropar, Rupnagar, Punjab, India

Viscous fingering (VF) instability has been extensively studied over past several decades in the context of various industrial, environmental and chemical processes. We try to model miscible VF at pushed or pulled interfaces using COMSOL Multiphysics®. We study the effect of the positive and negative log-mobility ratio on the fingering instability. Numerical simulation has been performed in 2D ...

Modeling of Wettability Alteration during Spontaneous Imbibition of Mutually Soluble Solvents in Mixed Wet Fractured Reservoirs - new

M. Chahardowli[1], H. Bruining[1]
[1]Delft University of Technology, Delft, The Netherlands

Mutually-soluble solvents can enhance oil recovery both in completely and partially water wet fractured reservoirs. When a strongly or partially water-wet matrix is surrounded by an immiscible wetting phase in the fracture, spontaneous imbibition is the most important production mechanism. Initially, the solvent moves with the imbibing brine into the core. However, upon contact with oil, as the ...

Network-of-Zones Model for Stirred Tank with Fractal Impeller - new

G.M. Mule[1], A.A. Kulkarni[1]
[1]CSIR - National Chemical Laboratory, Pune, Maharashtra, India

Stirred tanks are widely used in the pharmaceuticals, chemical and paint industries for variety of operations. The fractal impeller is an impeller having a novel design, developed by CSIR-National Chemical Laboratory, Pune, India. The power number of fractal impeller is relatively lower than the conventional impellers. The mixing performance is also relatively better than the conventional ...

Numerical Simulation of Forced and Static Smoldering Combustion

S. Singer[1], W. H. Green[1]
[1]Massachusetts Institute of Technology, Cambridge, MA, USA

Transient, two-dimensional (axisymmetric) simulations of a cigarette subject to realistic static and forward smoldering cycles were performed. The computational domain consists of a porous packed bed of tobacco and a filter surrounded by a thin, porous paper and a region of surrounding air. The governing equations include overall mass conservation, momentum conservation, conservation equations ...