Quick Search

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Network-of-Zones Model for Stirred Tank with Fractal Impeller - new

G.M. Mule[1], A.A. Kulkarni[1]
[1]CSIR - National Chemical Laboratory, Pune, Maharashtra, India

Stirred tanks are widely used in the pharmaceuticals, chemical and paint industries for variety of operations. The fractal impeller is an impeller having a novel design, developed by CSIR-National Chemical Laboratory, Pune, India. The power number of fractal impeller is relatively lower than the conventional impellers. The mixing performance is also relatively better than the conventional ...

A Study on Nutrient Mass Transport through Porous Channeled Flat Sheet Membrane and Prediction of Maximum Scaffold Thickness for Viable Cell Culture (In-vitro) by 3D Modeling for Tissue Engineering Application

N. M. S. Bettahalli[1], B. J. Papenburg [2], D. S. Stamatialis [2], M. Wessling [3]
[1]University of Twente, Enschede, The Netherlands & BMS College of Engineering, Bangalore, India
[2]University of Twente, Enschede, The Netherlands
[3]RWTH Aachen University

Tissue engineering (TE) is a multidisciplinary field involving principles of engineering and life sciences to improve the health and quality of life by repairing, restoring, maintaining, or enhancing tissue and organ function using cells, scaffolds, and growth factors alone or in combination. There are several artificial tissues that are already being used which include fabricated skin, ...

Multiphysics Approach of the Performance of a Domestic Oven

N. Garcia-Polanco[1], J. Capablo[1], J. Doyle[1]
[1]Whirlpool Corporation, Cassinetta di Biandronno (VA), Italy

The heat and mass transfer processes occurring in a domestic oven is in detailed analyzed in this work, with the final objective of improving the global energy efficiency of the system. A 3D Finite Element model developed with a Multi-physics approach is validated with the experimental data from the standard test for energy consumption of the European Union (EN 50304:2001). In this test a brick ...

Modelling Waste Water Flow in Hollow Fibre Filters

I. Borsi[1] and A. Fasano[1]
[1]Dipartimento di Matematica U. Dini, Università di Firenze, Firenze, Italy

In this paper we present a model to describe the process of waste water filtration based on hollow-fibre membrane filters. In particular, we deal with membranes whose pores diameter is in the range 0.01-0.1 µm. The main problem in these filtering systems is the membrane fouling. The mathematical model consists in two equations for the Darcy's flow through the filter, coupled with an ...

Watching Paint Dry: A 2D Model of Latex Film Formation

W. Vetterling
ZINK, Imaging Inc.
Bedford, MA

In this work we have constructed a 2D COMSOL model for the drying of Latex. It is based on a prior 1D model of Kiil, but also includes the effects of a flowing air stream, which is necessary to remove the evaporated water vapor. The model illustrates several features of drying that are not accessible to the 1D model, in particular the a profile in the air/water interface that forms near the ...

Numerical Simulation of Forced and Static Smoldering Combustion

S. Singer[1], W. H. Green[1]
[1]Massachusetts Institute of Technology, Cambridge, MA, USA

Transient, two-dimensional (axisymmetric) simulations of a cigarette subject to realistic static and forward smoldering cycles were performed. The computational domain consists of a porous packed bed of tobacco and a filter surrounded by a thin, porous paper and a region of surrounding air. The governing equations include overall mass conservation, momentum conservation, conservation equations ...

Boundary conditions in multiphase, porous media, transport models of thermal processes with rapid evaporation

A. Datta[1], and A. Halder[1]
[1]Biological and Environmental Engineering, Cornell University, Ithaca, New York, USA

In modeling of thermal processing of biological materials with rapid evaporation, it is critical to provide boundary conditions consistent with the phenomena happening at the surface to accurately predict spatial temperature and moisture content for quality and safety assurance. Boundary conditions in a mathematical model are as important as governing equations itself and describe how the heat ...

Simulation Of A Hydrogen Permeation Test On A Multilayer Membrane

J. Bouhattate, E. Legrand, A. Oudriss, S. Frappart, J. Creus, and X. Feaugas
Laboratoire d’Etude des Matériaux en Milieu Agressif, LEMMA, Bat. Marie Curie, La Rochelle, France

To understand a metal susceptibility to Hydrogen Embrittlement (HE), it is important to quantify the diffusion of hydrogen through a metallic membrane. Electrochemical permeation tests are the most common methods for experimentally determining the diffusion coefficient of a metal. However the parameters directly accessible from experiments are the time required for a stream to be observed and ...

Heat and Mass Transfer in Reactive Multilayer Systems (RMS)

M. Rühl[1], G. Dietrich[2], E. Pflug[1], S. Braun[2], A. Leson[2]
[1]TU Dresden, Laser and Surface Technology, Dresden, Germany
[2]IWS Dresden, Fraunhofer Institute for Material and Beam Technology, Dresden, Germany

Established joining techniques like welding, soldering or brazing typically are characterized by a large amount of heat load of the components. Especially in the case of heat sensitive structures like MEMS this often results in stress induced deformation and degradation or even damaging of the parts. A back door of this problem are Reactive Multilayer Systems (RMS). These foils consist of ...

Model Development and Implementation of a Membrane Shift Reactor

J. Völler[1], M. Follmann[1], C. Bayer[1], and T. Melin[1]

[1]AVT Chemical Process Engineering, RWTH Aachen University, Aachen, Germany

Low temperature fuel cells require hydrogen of high purity for electricity production to avoid catalyst poisoning. To purify hydrogenrich flue gases from hydrocarbon steam reforming membrane shift reactors with a metal membranes may be utilized. A model of a tubular membrane shift reactor with a hydrogenseparating palladium membrane is modeled in the COMSOL Multiphysics® Chemical Engineering ...