Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Simulation Of A Hydrogen Permeation Test On A Multilayer Membrane

J. Bouhattate, E. Legrand, A. Oudriss, S. Frappart, J. Creus, and X. Feaugas
Laboratoire d’Etude des Matériaux en Milieu Agressif, LEMMA, Bat. Marie Curie, La Rochelle, France

To understand a metal susceptibility to Hydrogen Embrittlement (HE), it is important to quantify the diffusion of hydrogen through a metallic membrane. Electrochemical permeation tests are the most common methods for experimentally determining the diffusion coefficient of a metal. However the parameters directly accessible from experiments are the time required for a stream to be observed and the ...

Simulation of Gravitational Instability During CO2 Absorption in a NaHCO3/Na2CO3 Solution

C. Wylock[1], A. Rednikov[1], B. Haut[1], P. Colinet[1]
[1]Université Libre de Bruxelles (ULB), Transfers, Interfaces and Processes (TIPs), Brussels, Belgium

This work deals with the modeling and the numerical simulation of the CO2 absorption, coupled with a chemical reaction, in an initially quiescent aqueous solution of sodium carbonate (Na2CO3) and bicarbonate (NaHCO3), inside a Hele-Shaw cell. In our Hele-Shaw cell, the liquid fills partially the gap between two parallel transparent Plexiglas plates. CO2 is forced to flow above the liquid in the ...

Simulations of Heat and Mass Transport During Biomass Conversion Processes Using 3D Biomass Particle Models with Realistic Morphology and Resolved Microstructure - new

P. Ciesielski[1], M. Crowley[1], L. Thompson[1], B. Donohoe[1], D. Robichaud[2], A. Sanders[3], M. Nimlos[2], T. Foust[2]
[1]Biosciences Center, National Renewable Energy Laboratory, Golden, CO, USA
[2]National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO, USA
[3]Quantum Electronics & Photonics Division, National Institute of Standards & Technology, Boulder, CO, USA

Predictive simulations of biomass conversion processes will improve their technical performance and reduce economic uncertainty surrounding industrialization of biofuels production. The majority of present conversion simulations treat the biomass feedstock with simplifying assumptions that neglect important characteristics that are unique to biomass particles. These characteristics, including ...

Paleohydrogeological Reactive Transport Model of the Olkiluoto Site (Finland) - new

M. Luna[1], P. Trinchero[1], J. Molinero[1], J. Löfman[2], P. Pitkanen[3], L. Koskinen[3]
[1]Amphos 21 Consulting, Barcelona, Spain
[2]VTT Energy, Espoo, Finland
[3]Posiva, Eurajoki, Finland

The safety assessment of the deep geological repository for nuclear waste of Olkiluoto (Finland) requires the evaluation of the influence of the land uplift (ice withdrawal) in groundwater. With this objective in mind, we have developed a three dimensional reactive transport model of the Olkiluoto, simulating the most relevant deformation zones in a three-dimensional domain. The evolution in ...

Deep Desulfurization of Diesel Using a Single-Phase Micro-Reactor

G. Jovonavic[1], J. Jones[1], and A. Yokochi[1]
[1]School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, Oregon, USA

This paper describes the benefits of computational fluid dynamics in the development of a microreactor used in the desulfurization of aromatic compounds. It is crucial to verify diffusion and extinction coefficients to ensure accurate simulation results prior to experiments. COMSOL Multiphysics was used to model the behavior of all of the possible species present and reactions that may occur.

Modeling of Chemo-Mechanical Coupled Behavior of Cement Based Material

D. Hu[1], F. Zhang[2], H. Zhou[3], and J. Shao[1]
[1]LML, UMR8107, CNRS, University of Lille I, Lille, France
[2]School of Civil Engineering and Architecture, Hubei University of Technology, Wuhan, China
[3]State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, China

A lixiviation-mechanical coupled model is developed for fiber reinforced concrete within this framework; both the influence of chemical degradation on short and long term mechanical behavior and the influence of mechanical loading on the diffusion coefficient can be considered. The elastic mechanical properties are written as function of chemical damage. A Drucker–Prager typed criterion with ...

Heat, Air, and Moisture (HAM) Modeling of Historic Windows

H.L. Schellen[1]
[1]Eindhoven University Of Technology, Eindhoven, The Netherlands

Windows are the thermal weakest places in the external envelop of buildings. This is true for historic windows with original single pane glazing in historic buildings. To reduce the energy consumption and to improve thermal comfort of historic buildings, replacing these windows by modern double glazed windows affects the authentic character of these buildings too much. One way to improve the ...

Phase Field Modeling of Helium Precipitate Networks on Solid-state Interfaces

D. Yuryev[1], M. Demkowicz [1]
[1]Massachusetts Institute of Technology, Cambridge, MA, USA

We describe simulations performed in COMSOL Multiphysics® of the precipitation of helium (He) on solid-state interfaces. The non-uniform precipitation of He at certain interfaces is a result of a heterogeneous energy distribution in the interface plane: He wets high interface energy (“heliophilic”) regions but does not wet low interface energy (“heliophobic”) ones. Using a phase-field ...

Modelling of Non-Equilibrium Effects in Solvent-Enhanced Spontaneous Imbibition in Fractured Reservoirs

M. Chahardowli[1], R. Farajzadeh[1] , H. Bruining[1]
[1]TU Delft, Delft, The Netherlands

In fractured reservoirs, much of the oil is stored in low permeable matrix blocks that are surrounded by a high permeability fracture network. Therefore, production from fractured reservoir depends on the transfer between fracture and matrix, which is critically dependent on their interaction. COMSOL Multiphysics® was implemented to model the process of penetration of the aqueous phase into an ...

Solid State Transport of Reactive Charged Particles: Application to Metal Oxidation

P. Buttin[1], B. Malki[1], P. Barberis[2], and B. Baroux[1]
[1]SIMAP/groupe SIR, CNRS, France
[2]AREVA - AREVA NP - CEZUS Research Center, France

This paper studies multicomponent transport through zirconia, assuming a chemical reaction involving electrons and oxygen vacancies defects. Classically, according to the Wagner theory for ambipolar diffusion, the electroneutrality condition in the oxide is considered. Therefore three constraints must be satisfied on the transport problem: oxide stoichiometry, electroneutrality and the source ...

Quick Search