Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Simulated Suspended Solid Concentrations of Secondary Clarifiers in the Activated Sludge Process using the COMSOL Multiphysics Program

C. Gavrila1, and I. Gruia2
1Technical University of Civil Engineering, Bucharest, Romania
2University of Bucharest, Bucharest, Romania

An activated sludge system accomplishes an enhanced biological purification of wastewater, and is the most frequently used system to purify such.The purification of wastewaters are dynamical systems, operating under important and uncontrolled variations of concentration and composition of the polluting substances. Mathematical models are essential for describing, predicting, and controlling these ...

Pre-design of a Molten Salt Thorium Reactor Loop

J. P. Caire, and A. Roure
LEPMI-ENSEE, Saint Martin d'Hères, France

The generation 4 of molten salt reactors using the thorium cycle are characterized by a temperature close to 1000 oC. The very large heat transfers involved between the reactor core and the external parts with minimal thermal losses are a major issue. This study investigated a possible inner loop made of a series of conventional graphite filter plate exchangers, pipes and pumps, using the COMSOL ...

Modeling the iodine removal efficiency and temperature behavior for an FADS charcoal filter by FEMLAB

Qin, Z.1, Wren, J.C.1, Moore, C.J.2
1 Department of Chemistry, The University of Western Ontario, London, Ontario, Canada
2 Chalk River Laboratories, Atomic Energy of Canada Limited Chalk River, Ontario, Canada

A key component of the Filtered Air Discharge System in nuclear power reactors is a charcoal filter, intended to remove gaseous fission products, mainly radioiodine, in the unlikely event of an accident. Models for removal of CH3I and temperature behaviour of a charcoal filter have been described. The CH3I removal model is based on a mass balance equation consisting of CH3I transport due to ...

Visions Realized: Using COMSOL Multiphysics to Prepare Students for the Modern World

Bruce A. Finlayson
University of Washington
Washington, USA

This talk demonstrates the success in teaching chemical engineering undergraduates to use COMSOL Multiphysics (FEMLAB) to solve realistic problems in a project format. Undergraduates have been creative and solved problems much more difficult than those in their textbooks, thus gaining a deeper understanding of transport processes. Illustrations are also given how they check to see they’ve ...

Study of Thermo-Electrical and Mechanical Coupling During Densification of a Polycrystalline Material Using COMSOL

F. Mechighel[1,2,3], B. Pateyron[1], M. El Ganaoui[1], and M. Kadja[3]
[1]CNRS SPCTS UMR 6638, Universite de Limoges, France
[2]Département de Génie Mécanique, Universite de Annaba, Algerie
[3]Département de Génie Mécanique, Universite de Constantine, Algerie

Spark Plasma Sintering (SPS) is a promising rapid consolidation technique that allows a better understanding and manipulation of sintering kinetics and therefore makes it possible to obtain polycrystalline materials (ceramic or metallic) with tailored microstructures. A numerical simulation of the electrical, thermal and mechanical coupling during SPS is performed. Equations for conservation for ...

COMSOL application in modeling PEMFC transients

X. Li
Chinese Academy of Sciences, Dalian Institute of Chemical Physics, Beijing, China

We studied the transient characteristics of PEMFC and water transport during PEMFC start-up, concerning the following aspects: Effect of air stoichiometry change on transient behavior of PEMFC, Transient behavior of water transport during PEMFC start-up, and high temperature PEMFC modeling.

Surface Aeration System Modeling using COMSOL

G. Selembo, P. Selembo, J. Stanton, and G. Paulsen
University of North Carolina
Charlotte, NC

Surface aeration systems are used in the wastewater treatment industry for the transfer of oxygen in the activated sludge process. These systems are capital intensive and also require a significant amount of energy to operate. Scale-up and design of these systems is largely empirical, and due to the size of these systems, modifications for experimental testing can be economically prohibitive. ...

Application of FEMLAB on supercritical hydrogen components of the high flux isotope reactor cold source

Freels, J.D.
Oak Ridge National Laboratory, Oak Ridge, TN

FEMLAB has played a key role in the design and safety analysis of several key components of the new High Flux Isotope Reactor (HFIR) hydrogen (H2) cold neutron source (CS) at Oak Ridge National Laboratory (ORNL). The main components of interest for the detailed analysis capability of FEMLAB are those where the H2 temperature spans a large range causing the fluid properties to change dramatically ...

Analysis of Solar Hot Water Storage

K.O. Lund
Applied Chemical and Engineering Systems

In a Solar Hot Water System, the hot water from the solar collector enters at the top of the storage tank. A relevant question concerning the storage is what will the outlet temperature be. In the present work we present a way to model Solar Hot Water Systems.

Modeling of Transport Phenomena during Hydrogen Uptake in an Alanate Storage System Equipped With Metallic Honeycomb Heat Exchanger

M. Bhouri[1], J. Goyette[1], B.J. Hardy[2], and D.L. Anton[2]
[1]Hydrogen Research Institute, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
[2]Savannah River National Laboratory, Aiken, SC, USA

In this paper, a metallic honeycomb structure is used as a heat exchanger in order to improve the hydrogen refuelling time for an alanate storage system. Using COMSOL software, the heat exchanger structure and the hydride bed are modeled as a two separate media and the governing equations describing the physics phenomena occurring during the loading process, are solved. The simulation results ...

Quick Search