Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Thermo-fluid Dynamics Modelling of Hydrogen Absorption and Desorption in a LaNi4.8Al0.2 Hydride Bed

D. Baldissin[1] and D. Lombardo[1]
[1]Compumat S.r.l., Torino, Italy

A two-dimensional mathematical model for the absorption and desorption of H2 in LaNi4.8Al0.2 was developed and experimentally validated. The model is composed of an energy balance, a mass balance and a momentum balance. These differential equations are numerically solved by means of the finite element method using the software COMSOL Multiphysics®. From a comparison between theoretical ...

Modeling Electrochemical Systems with Multiphysics

R.E. White
University of South Carolina

In this presentation we introduce the concept of Electrochemical Engineering through simulations in COMSOL Multiphysics. Our special case studies are: • a Parallel Plate Electrochemical Reactor, • a Rotating Ring Disk System, • a 3D Lithium Ion Battery, • a Portable Power System, • a Corroding Surface. These examples are all industrial ones, which shows the power of using ...

Multiphysics Modeling of Engineered Structured Sorbents for the Adsorption of Carbon Dioxide and Water Vapor from Manned Spacecraft Atmospheres

J. Knox
NASA, Huntsville, AL, USA

In NASA’s Vision for Space Exploration, humans will once again travel beyond the confines of earth’s gravity, this time to remain there for extended periods. Thus all spacecraft systems, including those for the separation of metabolic carbon dioxide and water from a crewed vehicle, must be minimized with respect to mass, power, and volume. This paper describes efforts to improve on ...

Blistering of Industrial Floor on Concrete Substrate: the Role of the Air Overpressure

S.V. Aher[2], P. Devillers[1], G. Fau[3], B. Tranain[3], and C. Buisson[1]
[1]Centre des Matériaux de Grande Diffusion, Ecole des Mines d’Alès, Alès cedex, France
[2]Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, Uttar Pradesh, India
[3]Centre Scientifique et Technique du Bâtiment, France

Surface coating can fullfil their function satisfactorily over an extended period of time only if there is a good bond between the concrete substrate and the coating. The most numerous cases of blistering affect the airtight covers of the concrete subjected to negative pressures of humidity from the support. The general objective of this study is the understanding of the blistering phenomenon. ...

Solid State Transport of Reactive Charged Particles: Application to Metal Oxidation

P. Buttin[1], B. Malki[1], P. Barberis[2], and B. Baroux[1]
[1]SIMAP/groupe SIR, CNRS, France
[2]AREVA - AREVA NP - CEZUS Research Center, France

This paper studies multicomponent transport through zirconia, assuming a chemical reaction involving electrons and oxygen vacancies defects. Classically, according to the Wagner theory for ambipolar diffusion, the electroneutrality condition in the oxide is considered. Therefore three constraints must be satisfied on the transport problem: oxide stoichiometry, electroneutrality and the source ...

COMSOL Modelling of a Planar Micro Ion Mobility Spectrometer

R. Cumeras, I. Gràcia, E. Figueras, L. Fonseca, J. Santander, M. Salleras, C. Calaza, N. Sabaté, and C. Cané
Instituto de Microelectrónica de Barcelona, Barcelona, Spain

A micro Planar Ion Mobility Spectrometer (P-FAIMS) has been simulated using multiphysics software. In P-FAIMS target ions are discriminated by the application of the proper separation voltages to the electrodes of the system. Modelling of vapour phase ions of two compounds have been studied for different values of electric field amplitude to gas number density (E/N) ratio: a health risky volatile ...

Theoretical Simulations of Silicon-On-Nothing (SON) Structures

C. Grau Turuelo[1], B. Bergmann[1], C. Breitkopf[1], F. Hoffmann[2], L. Brencher[2]
[1]Technische Universität Dresden, Dresden, Saxony, Germany
[2]Infineon Technologies GmbH, Dresden, Dresden, Saxony, Germany

A novel technique for semiconductor manufacturing is introduced: Silicon-On-Nothing. This process consists of an initial cylindrical trench which has a shape evolution under certain conditions: high temperature (1100 °C), low pressure (10 Torr) and a non-oxidizing atmosphere such as hydrogen. These conditions enable a, mainly, surface diffusion phenomenon whose final result is an empty space ...

A Three Dimensional (3D) Thermo-Hydro-Mechanical Model for Microwave Drying

T. Gulati[1], H. Zhu[1], A. K. Datta[1]
[1]Department of Biological & Environmental Engineering, Cornell University, Ithaca, NY, USA

Microwave drying of foodstuffs is a complex interplay of mass, momentum, and energy transport coupled with large deformation of the solid. To be able to better understand the microwave drying process, a fundamentals-based three dimensional (3D) multiphase porous media based model is developed to simulate the microwave drying process. An elaborate experimental system comprising of infrared camera, ...

A CFD Analysis of the Operating Conditions of a Multitube Pd Membrane for H2 Purification

B. Castro-Dominguez[1], R. Ma[1], A. G. Dixon[1], Y. H. Ma[1]
[1]Chemical Engineering Department, Worcester Polytechnic Institute, Worcester, MA, USA

The optimization of operating conditions in multitube membrane modules is highly complex. The multiple physics and irregular geometries involved create a challenge for predicting their behavior. This work analyzes the performance of H2 purification through a module containing seven membranes. Using experimental parameters, a 3-D model was devised, specifying the membrane as a reacting boundary ...

A 2D Model of the Flow in Hydrocyclones

B. Chinè[1], F. Concha[2], M. Meneses G.[3]
[1]School of Materials Science and Engineering, Costa Rica Institute of Technology, Cartago, Costa Rica
[2]Department of Metallurgical Engineering, University of Concepcion, Concepcion, Chile
[3]School of Production Engineering, Costa Rica Institute of Technology, Cartago, Costa Rica

Hydrocyclones are industrial devices used as processing units in fluid and particle technology. A hydrocyclone is an apparatus consisting of a cylindrical or a cylindrical-conical body with a tangential or involute entrance to admit the fluid inside. There are also two opposite exits, the top exit which is the vortex finder and the bottom exit called apex. Fig. 1 shows the schematic of a widely ...

Quick Search