Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Multiphysical Modeling of Calcium Carbonate Transportation in UV Disinfection in Water Treatment

E. R. Blatchley[1], and B.Z. Sun[1]
[1]Department of Civil Engineering, Purdue University, West Lafayette, IN, USA

Mineral precipitation on to the quartz surface of the lamp jackets in UV disinfection process (fouling) has been recognized as a major problem for UV radiation delivery during disinfection operation. Fouling behavior was observed to be induced thermally and influenced by hydraulic character of the UV disinfection configuration. Fouling process involves momentum, heat, and mass transport within ...

Modeling the Performance of Energy Recovery Ventilators

N. Lemcoff[1], R. Pastor[2], and E. Miravete[1]
[1]Rensselaer Polytechnic Institute, Hartford, CT
[2]General Dynamics Electric Boat, Groton, CT

The objective of this study is to numerically evaluate the effectiveness of an energy recovery ventilator (ERV) during the summer and winter seasons. The energy recovery ventilator allows heat and mass transfer between two air streams separated by a membrane. The effects of varying the following parameters were examined: flows through the supply and exhaust ducts, height of the exhaust channel, ...

Modelling of Non-Equilibrium Effects in Solvent-Enhanced Spontaneous Imbibition in Fractured Reservoirs

M. Chahardowli[1], R. Farajzadeh[1] , H. Bruining[1]
[1]TU Delft, Delft, The Netherlands

In fractured reservoirs, much of the oil is stored in low permeable matrix blocks that are surrounded by a high permeability fracture network. Therefore, production from fractured reservoir depends on the transfer between fracture and matrix, which is critically dependent on their interaction. COMSOL Multiphysics® was implemented to model the process of penetration of the aqueous phase into an ...

Capacitive Deionization for Desalinating Complex Streams - new

D. Cardoen[1,2], B. B. Sales[1], J. Helsen[1], A. Verliefde[2]
[1]VITO, Mol, Belgium
[2]Ghent University, Ghent, Belgium

Capacitive deionization (CDI) is a desalination technology which is based on the storage of ions in the electrical double layer of a pair of oppositely polarized porous carbon electrodes, which are usually assembled using activated carbon particles (Figure 1). It is efficiently deployed for desalinating water with moderate salt content (eg in domestic water softening)[1]. To broaden its ...

COMSOL Multiphysics for Efficient Solution of a Transient Reaction-Diffusion System with Fast Reaction

M.K. Gobbert[1], A. Churchill[1], G. Wang[1], and T.I. Seidman[1]
[1]Department of Mathematics and Statistics, University of Maryland, Baltimore County, Baltimore, Maryland, USA

A reaction between chemical species is modeled by a particular reaction pathway, in which one reaction is very fast relative to the other one. The diffusion controlled reactions of these species together with a reaction intermediate are described by a system of three transient reaction diffusion equations over a two-dimensional spatial domain. In the asymptotic limit of the reaction parameter ...

Upscaling of Heterogeneous Rock Properties via a Multiscale Image to Simulation Approach

S. Zhang[1], M. Pal[2], P. Barthelemy[1], M. Lei[1]
[1]Visualization Sciences Group, Burlington, MA, USA
[2]Shell International Exploration and Production, Rijswijk, The Netherlands

The mass and recoverability of oil and gas in unconventional reservoirs strongly depend on the understanding the petrophysical properties of the rocks at a large range of scales. Three-dimensional imaging is capable of unveiling the detailed microstructures within the rocks down to the nanometer scale. Using a multiscale imaging protocol, a Devonian shale rock sample with heterogeneities is ...

3D Simulation of Air-Glass Heat Exchange in a Set of Vials

G. Mongatti[1], A. Borelli[1]
[1]Marchesini Group, Pianoro, Italy

In this model a three-dimensional heat transfer analysis was performed by using COMSOL Multiphysics\' Heat Transfer Module. The model is about the heating of a set of vials (Figure 1) in a current of hot air in the laminar regime. We used time dependent studies to predict the thermal behavior of the glass and to estimate the temperatures in the various points of the bottles at various times. ...

Modelling the Response of Microdialysis Probes in Glucose Concentration Measurement

J.M. Gozálvez-Zafrilla[1], A. Santafé-Moros[1], J.L. Díez-Ruano[2], J. Bondia[2]
[1]Institute for Industrial, Radiophysical and Environmental Safety (ISIRYM) - Universitat Politècnica de Valencia, Valencia, Spain
[2]Instituto Universitario de Automática e Informática Industrial (AI2) - Universitat Politècnica de Valencia, Valencia, Spain

Microdialysis is a technique of continuous glucose monitoring in diabetic patients. In microdialysis, a saline serum is perfused into a microdialysis probe. Glucose pass from the plasmatic fluid through the porous membrane. The glucose concentration in the dialysate obtained is measured by an external analytical device. This preliminary work aimed to obtain a model to relate glucose ...

Multiphysics Model for Breakup of Charged Liquid Droplets in Electric Fields

S. Chaudhuri [1], W. Du [1],
[1] University of Illinois at Urbana-Champaign, Champaign, IL, USA

Predicting and controlling the formation of droplets from a liquid jet is a critical problem in a variety of applications ranging from fuel injection to paint sprays. It is known that liquid droplets subjected to an electric field acquire a net electrostatic charge via induction, and that the magnitude of this charge depends on the conductivity of the liquid and the size of the droplet [1]. When ...

Numerical Simulation of Forced and Static Smoldering Combustion

S. Singer[1], W. H. Green[1]
[1]Massachusetts Institute of Technology, Cambridge, MA, USA

Transient, two-dimensional (axisymmetric) simulations of a cigarette subject to realistic static and forward smoldering cycles were performed. The computational domain consists of a porous packed bed of tobacco and a filter surrounded by a thin, porous paper and a region of surrounding air. The governing equations include overall mass conservation, momentum conservation, conservation equations ...