Per page:

Mechanical Blog Posts

Modeling a Surface Micromachined Accelerometer

December 23, 2014

Surface micromachining is a process used to manufacture MEMS devices, which includes accelerometers. In this blog post, we model the electric field and forces within an accelerometer as well as highlight a new geometry feature available in COMSOL Multiphysics version 5.0.

Membrane Interface Improvements in Version 5.0

December 11, 2014

The Membrane interface has undergone a number of changes with the release of COMSOL Multiphysics version 5.0. This includes a restructured menu, new feature nodes, improvements to the Linear Elastic Material model, and support for the Hyperelastic Material model. You might remember the Nonlinear Structural Materials model Inflation of a Spherical Rubber Balloon. We have now rebuilt it using the Membrane interface. I will discuss these changes and the new model in today’s blog post.

Intro to Modeling Evaporative Cooling

December 8, 2014

When you think of evaporation, you probably think of the cup on your desk that spreads the aroma of coffee or tea. But evaporation is also a process with many industrial and scientific applications, ranging from meteorology to food processing. This blog entry is the beginning of a new blog series on modeling evaporative cooling. Here, we introduce the basic concepts using your coffee cup as an example.

New Accumulators Boost Particle and Ray Tracing Functionality

November 26, 2014

With the release of COMSOL Multiphysics version 5.0, the Particle Tracing Module now includes a series of features called Accumulators, which can be used to couple the results of a particle tracing simulation to other physics interfaces. The accumulated variables may represent any physical quantity and can be defined either within domains or on boundaries, making them extremely flexible. Here, I will explain the different types of accumulators and their applications in particle tracing and ray optics models.

Which Fatigue Model Should I Choose?

November 25, 2014

The most frequent question we get regarding the Fatigue Module is “Which fatigue model should I use in my simulations?” There is no straight answer to this question, since fatigue is not based on an exact differential equation, but on engineering observations that lead to different physical models. The applicability of each model can depend on factors such as material and loading type. Today, I will discuss different approaches for fatigue model selection and the applicability of the different models.

Analyzing Aircraft Engine Noise Through Simulation

November 17, 2014

The reduction of aircraft engine noise has been a priority in the aviation industry for many years. Minimizing sound emissions, of course, requires an understanding of engine noise — a task that can become quite challenging due to the complex nature of aircraft systems and geometries. Using a model of an aero-engine duct, we provide a more in-depth look at the acoustical field in aircraft engines.

Rosetta and Philae: A Historic Landing on a Comet

November 12, 2014

How the Sun, solar system, and planet Earth formed and how life began are fundamental science questions that still remain unanswered. Today, we may be one step closer to answering these questions, because the spacecraft Philae, which is aboard the Rosetta, is in the process of landing on a comet for the first time ever. I was able to interview two of the scientists involved in this project to gain insight into how Rosetta’s mission may answer these very questions.

Synthesizing Graphene with Chemical Vapor Deposition

November 6, 2014

With its growing use in numerous applications, the demand for graphene has steadily increased over the years. This heightened interest has prompted new research behind the methods for synthesizing graphene — one of which is chemical vapor deposition. See how one research team used modeling to analyze and enhance the CVD graphene growth mechanism.