Accessing External Material Models for Structural Mechanics

Ed Gonzalez | December 1, 2015

In structural mechanics, you may want to specify user-defined material models in your simulation. COMSOL Multiphysics® software version 5.2 enables you to access material models derived from external libraries as well as material functions programmed by yourself. We demonstrate how the new functionality works with the example of implementing Mazars’ model to describe damage to concrete.

Read More

Benjamin Loubet | September 23, 2015

Think about the first architects who designed a bridge above water. The design process likely included several trials and subsequent failures before they could safely allow people to cross the river. COMSOL Multiphysics and the Optimization Module would have helped make this process much simpler, if they had computers at the time, of course. Before we start to discuss building and optimizing bridges, let’s first identify the best design for a simple beam with the help of topology optimization.

Read More

Fabio Bocchi | August 27, 2015

Each year, tennis players from around the world compete at the U.S. Open, one of the oldest and largest tennis tournaments. With the 2015 tournament approaching, I found myself reflecting on my own experiences playing tennis, particularly how the feeling you get after hitting the ball is never quite the same. Is this simply a figment of the imagination or is there a physical answer? As I will explain here, so-called “sweet spots” can account for this feeling.

Read More

Caty Fairclough | July 29, 2015

A team of researchers from the Karlsruhe Institute of Technology in Germany has figured out a new simple mathematical technique for designing mechanical cloaks. This type of cloaking has great potential for practical uses, such as protecting buildings from earthquake damage for example.

Read More

Bridget Cunningham | July 23, 2015

3D printing has emerged as a popular manufacturing technique within a number of industries. The growing demand for this method of manufacturing has prompted greater simulation research behind its processes. Engineers at the Manufacturing Technology Centre (MTC) have identified their customers’ interest in a particular additive manufacturing technique known as shaped metal deposition. By building a simulation app, the team is better able to meet the demands of their customers while delivering more efficient and effective simulation results.

Read More

Caty Fairclough | July 17, 2015

Microfluidic systems often rely on valveless pumps, as they are both gentle on the biological material and low in the risk of clogging. However, by design, this type of pump is not suitable for viscous fluids and systems with small length scales or low flow rates. To overcome this limitation, you can introduce a micropump mechanism that converts oscillatory fluid motion into a unidirectional net flow.

Read More

Henrik Sönnerlind | June 29, 2015

The most fundamental material model for structural mechanics analysis is the linear elastic model. Trivial as it may sound, there are some important details that may not be obvious at first glance. In this blog post, we will dive deeper into the theory and application of this material model and give an overview of isotropy and anisotropy, allowable values for material data, incompressibility, and interaction with geometric nonlinearity.

Read More

Chandan Kumar | June 24, 2015

Previously on the blog, we have discussed the need for appropriate measured data to fit the material parameters that correspond to a material model. We have also looked at typical experimental tests, considerations for operating conditions when choosing a material model, and an example of how to use your measured data directly in a nonlinear elastic model. Our focus today will be on how to fit your experimental data to different hyperelastic material models.

Read More

Jennifer Segui | June 11, 2015

At Boeing, innovation comes in the form of modern aircraft such as the 787 Dreamliner, whose body is made up of over 50% carbon fiber composite. While incredibly lightweight and strong, such aircraft composites are not inherently conductive, thus requiring additional protective coatings to mitigate lightning strike damage. Here, we describe how multiphysics simulation is used to evaluate thermal stress and displacement in the protective coatings that undergo temperature fluctuations associated with the typical flight cycle.

Read More

Nicolas Lorphelin | June 9, 2015

Previously on the blog, we introduced you to hygroscopic swelling, describing its impact on specific types of materials. With the Hygroscopic Swelling feature, you can model this important effect in COMSOL Multiphysics. Follow along as we guide you through the modeling process, highlighting a new multiphysics coupling feature available in version 5.1.

Read More

Henrik Sönnerlind | June 3, 2015

Your finite element model will sometimes contain singularities — that is, points where some aspect of the solution tends toward an infinite value. In this blog post, we will explore the common causes of singularities, when and how to remove them, and how to interpret results when singularities are present in your model. While most of this discussion is in terms of structural mechanics, similar phenomena can also be found in many other physics fields.

Read More



1 2 3 4 5 9