How to Use the Well Feature in Subsurface Flow Models

Nancy Bannach August 21, 2017

As of version 5.3 of the COMSOL Multiphysics® software, the Subsurface Flow Module includes useful new features that enable you to set up complex modeling tasks more efficiently. For example, when modeling wells, meshing is significantly easier and is more intuitive to set up with the Well feature. In this blog post, we look at the Well feature, discussing how to use it and ways it enhances the modeling process.

Read More

Categories

Bridget Cunningham May 18, 2017

When the German engineer F. H. Poetsch first developed the artificial ground freezing (AGF) method in 1883, he did so to avoid water within Belgian coal mines. The method, which first received praise in the late 1800s, remains similar to its original form and is still valuable today. To develop a more effective AGF method, we can turn to simulation analyses.

Read More

Caty Fairclough April 3, 2017

People living near waterways can avoid the damaging effects of flooding by building embankments, which can be made safer using bank protection structures. However, factors such as soil pressure, water level fluctuation, and groundwater seepage can cause bank protection structures to deform and eventually collapse. To better understand this issue, researchers modeled a bank protection structure located within the Yangtze River in China, enabling them to predict the structure’s displacement and deformation.

Read More

Peter Lyu February 13, 2017

Simulating fluid flow underground or in other porous media is common in a number of engineering fields, such as agricultural, chemical, civil, and nuclear engineering. To help engineers and scientists simulate different types of porous media flow, the COMSOL Multiphysics® software provides a comprehensive set of physics interfaces. Today, we will go over the various interfaces that you can use and discuss how to choose the best one for your application.

Read More

Categories

Bridget Cunningham November 14, 2016

When designing a perforated well to recover oil and gas, choosing the right number of perforations with the appropriate properties is key. Too many holes and you run the risk of equipment failure or injury; too few and you decrease productivity levels. One way to achieve this balance and improve the safety and productivity of the recovery operation is to model fluid flow near the wells. Let’s see how the Application Builder makes this process even more efficient.

Read More

Guest Ionut Prodan September 13, 2016

Today, guest blogger and Certified Consultant Ionut Prodan of Boffin Solutions, LLC discusses using a hybrid approach to calculate fracture flux in thin structures. When modeling thin fractures within a 3D porous matrix, you can efficiently describe their pressure field by modeling them as 2D objects via the Fracture Flow interface. Significant fracture flux calculation issues, however, may arise for systems of practical interest, such as hydraulic fractures contained within unconventional reservoirs. See how a hybrid approach overcomes such difficulties.

Read More

Brianne Costa May 31, 2016

Reservoirs, dams, and other outdoor structures need to be strong, reliable, and sound. The porous materials found within these structures can be easily damaged by pressure changes that cause fluid flow and gradual caving and sinking. Using the multiphysics simulation capabilities of COMSOL Multiphysics and the Poroelasticity interface, we can accurately analyze porous materials to evaluate and avoid deformation in such structures.

Read More

Caty Fairclough May 3, 2016

Why are the famous paintings on the walls of a Netherlands chapel deteriorating? To answer this question, researchers from the Eindhoven University of Technology used physical measurements and simulation to evaluate how rising moisture affects the chapel’s artwork. Today, we’ll see how their research helped provide a better understanding of the damage occurring within this cultural heritage site.

Read More

Phillip Oberdorfer August 18, 2014

Safe and cost-effective drilling is a major issue in the oil and gas industry. In addition to the common prospecting risk, the borehole itself provides uncertainties that are not desired, but unavoidable. Today, we would like to show how numerical simulations can help here. The goal is to predict the stability of an open-hole multilateral well for deciding if the well will need expensive mechanical stabilization — or not.

Read More

Categories

Phillip Oberdorfer April 24, 2014

In the second part of our Geothermal Energy series, we focus on the coupled heat transport and subsurface flow processes that determine the thermal development of the subsurface due to geothermal heat production. The described processes are demonstrated in an example model of a hydrothermal doublet system.

Read More

Categories

Amelia Halliday April 1, 2014

The Leaning Tower of Pisa is regarded as one of the most famous landmarks in the world, although geotechnical engineers probably view it more as a construction gaffe. To prevent such a leaning fate, it could be useful to run an analysis in order to predict possible subsidence due to poroelastic deformation.

Read More

Categories


Categories


Tags

1 2