Per page:

Semiconductors Blog Posts

Investigating LED Efficiency via Multiphysics Simulation

December 3, 2014

Bright light-emitting diodes (LEDs) are revolutionizing the lighting industry and blue LEDs in particular are ushering in a new age of widespread efficient LED lighting. The importance of blue LEDs was marked by this year’s Nobel Prize in physics, which went to the inventors. But, because bright LEDs are driven by larger currents, they suffer from reduced efficiency — a phenomenon known as LED droop. Using multiphysics simulations, we can investigate and understand the mechanisms behind LED efficiency.

Integrated Circuit Design and the Photolithography Process

October 4, 2013

When designing products on the nanometer scale, physics interactions that are considered negligible on the larger scale make their presence known. One such case where these forces must be taken into account is in the design of integrated circuits, where understanding and optimizing the effects of van der Waals forces, attractive forces, and surface tension become vitally important to creating a robust design. As technological advancements call for both the size of integrated circuits to decrease and the density of […]

The Graphene Revolution: Part 5

May 8, 2013

In a paper titled “Choosing a Gate Dielectric for Graphene Based Transistors“, the applications of a semiconducting form of graphene are examined. As we have seen before, single-layer graphene is not a semiconductor, it is a zero bandgap conductor (a semimetal). Efforts are well underway to introduce bandgaps to graphene, which would make it semiconducting with a room temperature mobility an order of magnitude higher than silicon. The race is already underway to find applications for such a material once […]

25–27 of 27