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Abstract

Proton and Radiotherapy are leading particle therapy tactics used to combat chronic and malignant cancers [1]. Ultra-high
dose rate (UHDR) flash therapy is a new treatment modality that is currently being studied by several groups. The treatment
delivers high doses in a short period of time (40 Gy/s) and is highly effective against tumor cells while maintaining healthy
cells. Moreover, particle therapy also has radiobiological advantages compared to conventional therapy [2]. UHDR
dosimetry presents a crucial challenge to detectors when performing proper quality assurance (QA) measurements.

This work aims to build a high-resolution semiconductor-based 2D flat panel (FP) detector that is compatible with low-dose
radiotherapy and flash proton therapy. Among semiconductor materials, amorphous Silicon (a-Si) is notable for its high
radiation tolerance and ability to produce large-area pixels at low cost [3]. State-of-the-art X-ray FP detectors employ a-Si
pixels coupled with a thin-film transistor (TFT) technology. On the other hand, CMOS detectors that use crystalline Silicon (c-
Si) are limited by wafer size and radiation hardness but experience fast and accurate signal acquisition [4]. An in-depth
study of the behavior of a-Si and c¢-Si under particle beams for QA will be conducted.

Focusing on a-Si and using the Semiconductor Module, COMSOL Multiphysics was employed to simulate the perspective
photodiodes and understand the behavior of such technology. Starting from a simple block of thickness 1.2 um and width ~
5um, the predefined built-in material Silicon in COMSOL was edited to fit the parameters of a-Si and then assigned to the
block. Using the Analytical Doping Model, background acceptor doping of N_bkg~10211 cm”-3 is set to the domain.
Additionally, an n-doping and p-doping layer, each with a concentration of 1020 cm”-3, were added using the Box
distribution of the Analytical Doping Model, creating a 3D PIN a-Si photodiode. A square is added to the top p-layer and
added as a Metallic Contact to introduce a reverse-bias voltage, and the bottom n-layer is grounded. This is represented in
Figure 1. The stationary study is performed with an auxiliary sweep to sweep through different reverse-bias voltages, with
the finite element discretization. Effectively, the I-V curve and electric field across the junction of the diode are resolved, as
shown in Figures 2 and 3.

In addition, Garfield++ [5], a Monte Carlo (MC)-based simulation toolkit that specializes in gas and semiconductor-based
detectors, was interfaced with COMSOL to perform signal and charge analysis. Using the dedicated class
Garfield::ComponentComsol(), the mesh file and electric potential files were exported from COMSOL into Garfield++, and
the exact solution of the electric field at each mesh point was used to simulate the particle track and electric signal induced
on the electrodes. Figure 4 shows the current signal from irradiation normalized to a single 100 MeV proton event at
different reverse-bias voltages.

COMSOL Multiphysics proves to be a very reliable and efficient toolkit to simulate the working principles of a-Si
photodiodes. Further in-depth simulations will be done to build an a-Si TFT in 3D and compare all the results with an
existing sample.

Keywords: Semiconductor Module, aSi TFT, Medical Dosimetry, Quality Assurance.

Reference

[1] E. C. Halperin, “Particle therapy and treatment of cancer,” The lancet oncology, vol. 7, no. 8, pp. 676-685, 2006.

[2] B. Lin, D. Huang, F. Gao, et al., “Mechanisms of flash effect,” Frontiers in Oncology, vol. 12, p. 995 612, 2022.

[3] Ducourant, T., Wirth, T., Bacher, G., Bosset, B., Vignolle, J. M., Blanchon, D., ... & Rohr, P. (2018, March). Latest
advancements in state-of-the-art aSi-based x-ray flat panel detectors. In Medical Imaging 2018: Physics of Medical Imaging
(Vol. 10573, pp. 1498-1508). SPIE.

[4] Job, I. D., Ganguly, A., Vernekohl, D., Weisfield, R., Munoz, E., Zhang, J., ... & Colbeth, R. (2019, April). Comparison of
CMOS and amorphous silicon detectors: determining the correct selection criteria, to optimize system performance for
typical imaging tasks. In Medical Imaging 2019: Physics of Medical Imaging (Vol. 10948, pp. 101-112). SPIE.

[5] H. Schindler, R. Veenhof, Garfield++ | simulation of ionisation based tracking detectors, 2018, URL
http://garfieldpp.web.cern.ch/garfieldpp/

Figures used in the abstract



Net Dopant Concentration |Nd - Na|: P-type (Red), N-type (Blue)
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Figure 1 : Figure 1: The Net dopant concentration of a PIN diode shows the top p-doped layer and the bottom n-doped
layer.



I-V Curve of the photodiode evaluated by the terminal current on the bias
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Figure 2 : Figure 2: The terminal current of the simulated PIN diode with respect to different bias voltages.



Electric Field (V/cm) of the photodiode with different reverse bias

voltages
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Figure 3 : Figure 3: The electric field across the z-junction junction of the diode at different reverse bias voltages.




Induced Current Normalized to one Proton event with Different Vbias
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Figure 4 : Figure 4: The induced current normalized to one 100 MeV proton event at two reverse bias voltages.
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