Numerical Simulations For Designing Wireless Electrochemiluminescence Imaging Microdevices

Pascale PHAM¹, Abdulghani Ismail², Silvia Voci³, Loïc Leroy², Ali Maziz⁴, Lucie Descamps², Alexander Kuhn³, Pascal Mailley¹, Thierry Livache², Arnaud Buhot²

Abstract

ElectroChemiLuminescence (ECL) is a phenomenon of light emission resulting from an initial electrochemical reaction [1]. Today, ECL is used for detecting biomolecules (DNA, RNA, biomarkers). Unlike other optical detection methods used in biosensors (e.g. fluorescence), ECL is a highly sensitive and selective method because it does not require an exciting light source. BiPolar Electrochemistry (BPE) is an elegant electrochemical wireless technique based on the use of a conducting object (i.e. a mono-electrode) which, immersed in a sufficiently high electric field, is polarized into two poles, one of which acts as the anode and the other as the cathode simultaneously [2].

The usual pre-dimensioning techniques for the BPE show that its implementation in microsystems was not feasible due to the high values of the required applied voltage [2]-[3]. However, we could perform ECL in a 2D micropore (20 x 10 μ m) for applied voltages of a few volts [3]. A gold deposit (6 x 3 μ m) at the bottom of the same 2D micropore was also the site of ECL reactions (results in publication).

The dimensioning of the microdevice was carried out by numerical simulation (Comsol MultiphysicsTM, complex electrokinetic equation). Here we present our numerical results and show the interest of using numerical simulation for designing Wireless Electrochemiluminescence Imaging microdevices.

Reference

- [1] L. Bouffier, S. Arbault, A. Kuhn, et N. Sojic, « L'électrochimiluminescence : une méthode de choix pour la bioanalyse », p. 11, 2018.
- [2] G. Loget et A. Kuhn, « L'électrochimie bipolaire, un nouvel outil pour la chimie analytique et les nanosciences », p. 16, 2011.
- [3] A. Ismail et al., « Enhanced Bipolar Electrochemistry at Solid-State Micropores: Demonstration by Wireless Electrochemiluminescence Imaging », Anal. Chem., vol. 91, no 14, p. 8900-8907, 2019, doi: 10.1021/acs.analchem.9b00559.

Figures used in the abstract

Figure 1: Figure 1: a) Scanning Electron Microscopy image of the microchip with the micropore $(10 \times 10 \times 20 \ \mu m)$ and the integrated feeder Au electrodes. b) zoom to the micropore where the

¹CEA-LETI, Minatec Campus, Grenoble, France

²Univ. Grenoble Alpes, CEA, CNRS, INAC-SyMMES, 38000 Grenoble, France

³Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400, Talence, France

⁴LAAS-CNRS, Université de Toulouse, 31400 Toulouse, France

ECL-emitting bipolar rhombus-shaped Au surface (6 x 3 μm) is visible in the m

Figure 2: Figure 2: Top: b) Numerical 3D geometry of the ECL microchip with the micropore (10 x 10 x 20 μ m), a) the integrated feeder Au electrodes and the ECL-emitting bipolar rhombus-shaped Au surface (6 x 3 μ m). Bottom: numerical results (0 Hz): electric potenti