Modeling of rotating parts

Introduction

This exercise exemplifies the use of the rotating machinery feature in the Chemical Engineering Module. The rotating machinery application mode makes it possible to model moving rotating parts in for example stirred tanks, mixers and pumps.

The application mode takes care of the formulation of the momentum and mass balances in a rotating coordinate system. Parts that are not rotated are expressed in the fixed coordinate system. The application mode then takes care of the necessary administration to join the parts of the model that uses a rotating coordinate system with the parts that are fixed.

The application mode can be used in cases where the modeled device can be divided into rotational invariant geometries. The desired operation can be for example, to rotate an impeller in a baffled tank. This is exemplified by the figure below, where the impeller rotates from position 1 to 2 . The first step is to divide the geometry into two parts which are both rotational invariant, as shown in step la. The second step is to specify the parts that should be modeled with a rotating frame and the ones that should be modeled in a fixed frame, step lb below. The application mode then automatically does the coordinate transformation and the joining of the fixed and moving parts, step 2a.

Figure 5-35: The modeling procedure in the rotating machinery application mode in the Chemical Engineering Module.

Model definition

The model treated in this example is that of a pump. Despite the model being somewhat schematic, the example contains all the components needed to describe more realistic geometries. The modeled geometry is shown in the figure below. The impeller rotates clockwise with a speed of 10 RPM.

The model equations are the Navier-Stokes equations, which are formulated in a rotating frame in the inner subdomain and in fixed coordinates in the outer one.

The boundary conditions at the fixed wall of the pump are no-slip conditions. The boundary conditions for the impeller blades are no-slip clock wise rotation conditions. At the pump inlet, pressure is specified, while neutral conditions are implemented at the outlet.

The implementation in the rotating machinery application mode is quite straightforward. First you have to draw the geometry using two separate subdomains for the fixed and rotating parts. Then you have to activate the assembly feature, which makes it possible to treat the two subdomains as two separate parts in an assembly. After this you specify which part that uses a rotating frame. Once you have done this, you can proceed to the usual steps of setting the fluid properties, boundary conditions, and then to the meshing and solving of the problem.

Figure 5-36: Geometry of the schematic pump with the inner subdomain described in a rotating frame and the outer one in a fixed frame.

Results

The figure below shows the flow field as the modulus of the velocity vector and as equi-distance placed streamlines.

Figure 5-37: The flow field after 20.5 seconds. The plot shows that two small eddies are formed when the blades enters the inlet and outlet sections.

In the plot above you can clearly see that two eddies are created as the blades of the pump enter the inlet and outlet sections. These eddies decrease the efficiency of the pump. In addition to that, the streamlines show that a large part of the fluid rotates around the blade without actually leaving the pump. By decreasing the cross section of the recirculation area in the pump, it is possible to increase the performance of the pump as a function of the rotating speed of the blades. The figure below shows the velocity field for such a pump geometry. The net flow through the pump compared to
the above case is increased by almost a factor of 5 without increasing the rotational speed of the pump.

Figure 5-38: Velocity field for an improved geometry, where parts of the recirculation section bas been removed.

Model Library path:

Chemical_Engineering_Module/Momentum__Transport/schematic_pump1

Modeling Using the Graphical User Interface

I Start COMSOL Multiphysics.
2 In the Model Navigator select 2D in the Space dimension list.
3 In the list of application modes select
Chemical Engineering Module>Rotating Machinery>Rotating Navier Stokes.
4 Click OK.

OPTIONS AND SETTINGS

Open the Options>Constants dialog box. Enter the following constants; when done, click $\mathbf{O K}$:

NAME	EXPRESSION
dens	1 e 3
visc	$1 \mathrm{e}-2$
rpm	10

GEOMETRY MODELING

I Draw a circle of radius $4 \mathrm{e}-3$ centered at the point $(0,0)$.
2 Select the menu item Draw>Specify Objects>Rectangle to create a rectangle with the following settings:

Object	WIDth	height	base \boldsymbol{X}	base \mathbf{Y}
RI	$2 \mathrm{e}-3$	$6 \mathrm{e}-3$	$-4 \mathrm{e}-3$	$-6 \mathrm{e}-3$

3 Press Ctrl+A to select both objects.
4 Click the Create Composite Object button on the Draw toolbar. Deselect the Keep interior boundaries check box. Press $\mathbf{0 K}$.

5 Create a second rectangle with the following settings:

ObJECT	WIDth	height	base \boldsymbol{X}	base \boldsymbol{Y}
RI	$6 \mathrm{e}-3$	$2 \mathrm{e}-3$	0	$2 \mathrm{e}-3$

6 Again, press Ctrl+A t select both objects, click the Create Composite Object, and press OK.

7 Draw a circle of radius $3 \mathrm{e}-3$ centered at the point $(0,0)$.
8 Press Ctrl+A to select both objects.
9 Click the Create Composite Object button on the Draw toolbar. Activate the Keep interior boundaries check box. Press OK.
$\mathbf{1 0}$ Select the Split Object button on the Draw toolbar.
II Shift-click the Rectangle/Square (Centered) button on the Draw toolbar. In the Width field enter $5 \mathrm{e}-3$, in the height field enter $1 \mathrm{e}-4$, and set Base to Center. Click OK.
12 Press Ctrl+C to make a copy of the rectangle.
13 Press Ctrl+V and click $\mathbf{0}$.

14 Click the Rotate button on the Draw toolbar and set the Rotation angle to 90 degrees, click OK.

15 Shift-click to select both rectangles. Click the Create Composite Object button on the Draw toolbar. Deselect the Keep interior boundaries check box and press OK.

16 Shift-click again to select the cross and the inner circle, then press the Difference button.

17 Press Ctrl+A.

18 Activate the Use Assembly option on the Draw menu.
19 Choose Create Pairs from the Draw menu and click OK.

PHYSICS SETTINGS

Subdomain Settings

I From the Multiphysics menu, select the Moving Mesh (ALE) application mode.
2 Open the Subdomain Settings dialog box from the Physics menu and select subdomain 2.

3 In the Subdomain selection area, set the Group selection to rotate_CW.
4 Click OK.
5 From the Multiphysics menu, select Incompressible Navier-Stokes.
6 Open the Subdomain Settings dialog box from the Physics menu.
7 For both subdomains, set the Density to dens and the Dynamic viscosity to visc. Click OK to close the dialog box.

Boundary Conditions

I From the Physics menu, select Selection Mode>Boundary Mode.
2 Shift-click to select the twelve boundaries on the impeller surface. The boundary indices are 15-26.

3 Open the Boundary Settings dialog box from the Physics menu.
4 In the Boundary selection area, set the Group selection to no_slip_CW.
5 Select boundary 2 in the list and choose the Pressure condition.
6 For boundary 6, use the Neutral condition.
7 Click OK.

MESH GENERATION

Click the Initialize Mesh button on the Main toolbar.

COMPUTING THE SOLUTION

Click the Solve button on the Main toolbar.

COMPUTING THE SOLUTION

I Open the Solver Parameters dialog box from the Solve menu.
2 Set Times to 0:0.5:60, Relative tolerance to $1 \mathrm{e}-4$, and Absolute tolerance to $1 \mathrm{e}-5$.
3 Click OK to close the dialog box, and then the Solve button on the Main toolbar.

POSTPROCESSING AND VISUALIZATION
To generate Figure 5-37:
I From the Postprocessing menu open the Plot Parameters dialog box and go to the General page.

2 Select the Contour and Arrow check boxes, and deselect the Geometry edges check box.

3 Select 20 in the Solution at time list.
4 Press OK.

