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Abstract

Detailed numerical computations for laminar and turbulent natural convection within a square cavity filled with a

fluid saturated porous medium are presented. Heated vertical walls are maintained at constant but different tempera-

tures, while horizontal surfaces are kept insulated. The macroscopic j–e turbulence model with wall function is used to

handle turbulent flows in porous media. In this work, the turbulence model is first switched off and the laminar branch

of the solution is found when increasing the Rayleigh number, Ram. Computations covered the range 10 < Ram < 106

and 10�7 < Da < 10�10 and made use of the finite volume method. Subsequently, the turbulence model is included and

calculations start at high Ram, merging to the laminar branch for a reducing Ram and for Ram less than a certain critical

Rayleigh number, Racr. This convergence of results as Ram decreases can be seen as a characterization of the lamina-

rization phenomenon. For Ram values less than around 104, both laminar and turbulent flow solutions merge, indicat-

ing that such critical value for Ram was reached. Results further indicate that when the parameters porosity, Pr,

conductivity ratio between the fluid and the solid matrix and the Ram are kept fixed, the lower the Darcy number,

the higher the average Nusselt number at the hot wall.
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1. Introduction

Thermal convection in porous media has been stud-

ied extensively in recent years. Underground spread of

pollutants, grain storage, optimal design of furnaces

and solar collectors, crystal growth in liquids, nuclear

reactor safety and insulation, as well as food processing,

are just some applications of this theme. Further, the

analysis of buoyancy-driven flows in clear or porous

cavities provides useful comparisons for evaluating the
0017-9310/$ - see front matter � 2004 Elsevier Ltd. All rights reserv

doi:10.1016/j.ijheatmasstransfer.2004.07.017

* Corresponding author. Tel.: +55 12 3947 5860; fax: +55 12

3947 5842.

E-mail address: delemos@mec.ita.br (M.J.S. de Lemos).
robustness and performance of numerical methods deal-

ing with viscous flow calculations. The modeling of mac-

roscopic transport for incompressible flows in porous

media has been based on the volume-average methodol-

ogy for either heat [1] or mass transfer [2–4]. If the flow

fluctuates in time and has in addition to presenting spa-

tial deviations, there are two possible methodologies to

follow in order to obtain macroscopic equations: (a)

application of time-average operator followed by vol-

ume-averaging [5–8], or (b) use of volume-averaging be-

fore applying time smoothing [9–11]. It has been shown

that both sets of macroscopic mass transport equa-

tions are equivalent when examined under the recently

established double decomposition concept [12–16]. This
ed.
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Nomenclature

cF Forchheimer coefficient

c 0s non-dimensional turbulence model

constants

cp specific heat

d pore diameter

D D = [$u + ($u)T]/2, deformation rate tensor

Da Darcy number, Da ¼ K
H2

Dp Dp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
144Kð1�/Þ2

/3

r
, particle diameter

g gravity acceleration vector

Gk buoyancy production rate of turbulent

kinetic energy

Gi generation rate of hkii due to the action of

the porous matrix

Gi
b generation rate of hkii due to the buoyant

effects

h heat transfer coefficient

H square height

I unit tensor

K permeability

k k ¼ u0 � u0=2, turbulent kinetic energy per

mass unit

kf fluid thermal conductivity

ks solid thermal conductivity

Kdisp conductivity tensor due to the dispersion

Kdisp,t conductivity tensor due to the turbulent

dispersion

Kt conductivity tensor due to the turbulent heat

flux

Ktor conductivity tensor due to the tortuosity

L square width

Nu Nu = hL/keff, Nusselt number

Pe Peclet number

PeD modified Peclet number, PeD = Pe(1 � /)1/2

Pk shear production rate of turbulent kinetic

energy

Pi production rate of hkii due to gradients of
�uD

Pr Prandtl number

Raf Raf ¼ gbH3DT
vfaf

, fluid Rayleigh number

Ram Ram ¼ Raf � Da ¼ gb/HDTK
mfaeff

, Darcy–Rayleigh

number

Racr critical Rayleigh number

Rep Rep ¼ juD jd
mf

, Reynolds number based on the

pore diameter

T temperature

u microscopic velocity

uD Darcy or superficial velocity (volume aver-

age of u)

Greek symbols

a thermal diffusivity

b thermal expansion coefficient

DV representative elementary volume

DVf fluid volume inside DV

e e ¼ lru0 : ðru0ÞT=q, dissipation rate of k

l dynamic viscosity

lt microscopic turbulent viscosity

lt/
macroscopic turbulent viscosity

m kinematic viscosity

q density

r 0s non-dimensional constants

/ / = DVf /DV, porosity

Special symbols

u general variable

�u time average

u 0 time fluctuation

huii intrinsic average

huiv volume average
iu spatial deviation

juj absolute value (Abs)

u general vector variable

ueff effective value, ueff = /uf + (1 � /)us

us,f solid/fluid

(u)H,C hot/cold

(u)/ macroscopic value

( )T transpose
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methodology has been extended to heat transfer in por-

ous media where both time fluctuations and spatial devi-

ations were considered for velocity and temperature

[17,18]. Studies on the treatment of interface conditions

[19,20], on buoyant flows [21], mass transfer [22] and

double diffusion [23], in addition to a general classifica-

tion of models [24], have also been published.

Natural convection occurs in enclosures as a result of

gradients in density which, in turn, is due to variations in

temperature or mass concentration. Natural convection

in an infinite horizontal layer of fluid, heated from below,
has received extensive attention since the beginning of

the 20th century when Bérnard [25] observed hexagonal

roll cells upon the onset of convection in molten sperma-

ceti with a free upper surface. The work of Rayleigh [26]

was the first to compute a critical value, Rac, for the onset

of convection. The accepted theoretical value of this

dimensionless group is 1708 for infinite rigid upper and

lower surfaces. The study of natural convection in enclo-

sures still attracts the attention of researchers and a sig-

nificant number of experimental and theoretical works

have been carried out mainly from the 80s.



Fig. 1. (a) Geometry under consideration, (b) computational

grid.
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During the conference on Numerical Methods in

Thermal Problems, which took place in Swansea, [27]

proposed that buoyancy-driven flow in a square cavity

would be a suitable vehicle for testing and validating

computer codes. Following discussions at Swansea, con-

tributions for the solution of the problem were invited.

A total of 37 contributions from 30 groups in nine differ-

ent countries were received. The compilation and discus-

sion of the main contributions yielded the classical

benchmark of [28].

The first to introduce a turbulence model in their cal-

culations were [29]. They performed steady 2-D simula-

tions for Ra up to 1016 and presented a complete set of

results. Ref. [30] used the same turbulence model

adopted by them for 2-D calculations up to Ra = 1011.

In [31], 2-D calculations using various versions of the

j–e turbulence model were performed. These versions

included the standard as well as the low-Reynolds num-

ber j–e models.

In [32], 3-D calculations for laminar flow for Ra up

to 1010 were presented. Their graphs revealed the 3-D

character of the flow. Comparisons were made with 2-

D simulations and differences were reported for the heat

transfer correlation between Nu and Ra.

The paper of [33] reworked the problem for laminar

and turbulent flows for a wide range of Ra. Turbulence

was modeled with the standard j–e closure and the effect

of the assumed wall functions on heat transfer was

investigated.

The monographs of [34] and [35] fully document nat-

ural convection in porous media.

The case of free convection in a rectangular cavity

heated on a side and cooled at the opposing side is an

important problem in thermal convection in porous

media. The works of [36–42] have contributed with some

important results to this problem.

The recent work of [43], concerned a numerical study

of the steady free convection flow in rectangular and ob-

lique cavities filled with homogeneous porous media

using a nonlinear axis transformation. The Darcy

momentum and energy equations are solved numerically

using the (ADI) method.

Motivated by the foregoing work, this paper presents

results for both laminar and turbulent flows in a square

cavity totally filled with a porous material, heated from

the left and cooled from the opposing side. The other

two walls are kept insulated. The turbulence model here

adopted is the macroscopic j–e with wall function.
2. The problem under consideration

The problem considered is showed schematically in

Fig. 1(a) and refers to a square cavity with side

L = 1m completely filled with porous medium. The cav-

ity is isothermally heated from the left, TH, and cooled
from the opposing side, TC. The other two walls are

insulated. These boundary conditions are widely applied

when solving buoyancy-driven cavity flows [25]. The

porous medium is considered to be rigid and saturated

by an incompressible fluid. The Ram is the dimensionless

parameter used for porous media and it is defined as,

Ram = RafDa, with aeff = keff/(qcp)f and the particle

diameter is given by Dp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
144Kð1�/Þ2

/3

q
.

3. Governing equations

The equations used herein are derived in details in

Refs. [12–16] and for this reason their derivation need

not be repeated here. It is interesting to point out that

the value of porosity, /, in the governing equations to

be shown below, is located inside the spatial operator

(gradient). As such, no assumption is made on the con-

stancy of / over the domain of calculation. Pedras and

de Lemos [13] points out that the only restriction to

apply is the constancy of / with time, otherwise, volume

and time average operators do not commute.

Basically, for porous media analysis, a macroscopic

form of the time-averaged equations is obtained by

taking the volumetric mean of the entire equation set
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[12–16]. In that development, the medium was consid-

ered rigid and saturated by an incompressible fluid.

Accordingly, for a general fluid property u the intrinsic

and volumetric averages are related through the porosity

/ as,

huii ¼ 1

DV f

Z
DV f

udV ; huiv ¼ /huii; / ¼ DV f

DV
ð1Þ

where DVf is the volume of the fluid contained in DV, the

volume of a representative elementary volume. The

property u can then be defined as the sum of huii and
a term related to its spatial variation within the REV,
iu, as [3],

u ¼ huii þ iu ð2Þ

The macroscopic continuity equation is then given by,

r � �uD ¼ 0 ð3Þ
where the Dupuit–Forchheimer relationship, �uD ¼ /h�uii,
has been used and h�uii identifies the intrinsic (liquid)

average of the local velocity vector �u. The macroscopic

time-mean Navier–Stokes (NS) equation for an incom-

pressible fluid with constant properties is given as,

q
o�uD
ot

þr � �uD�uD
/

� �� �

¼ �r /h�pii
	 


þ lr2�uD þr � �q/hu0u0ii
	 


� qb/g/ hT ii � T ref

	 

� l/

K
�uD þ cF/qj�uDj�uDffiffiffiffi

K
p

� �

ð4Þ

Before proceeding, a word about the dispersion mecha-

nism seems timely. Bear [2] and Hsu and Cheng [1] have

defined, among others, the dispersion mechanism for

momentum and heat transport, respectively. Mathemat-

ically speaking, dispersion is a space correlation between

deviation of a generic flow property and velocity devia-

tion (see Pedras and de Lemos, [12]). When the flow

property is velocity, temperature, or mass concentration,

one has mechanical, thermal or mass dispersion, respec-

tively. Such mechanism is also present in laminar flow

through porous media (low Rep = juDjd/mf). Having de-

fined an appropriate nomenclature, considerations about

characteristics of the models here employed can be made.

In view of the above, it is interesting to point out that

mechanical dispersion has been neglected in Eq. (4). The

reason for assuming such hypothesis is based on the fact

that this work in intended to model flows in highly per-

meable, high porosity media, for which the range of pore

Reynolds number considered is given by Rep > 300. As

such, turbulent flow is assumed to exist within the med-

ium and, under this condition, turbulent transfer (third

term on the right of (4)) overwhelms mechanical disper-

sion (see [13]). For laminar flow with low Rep, however,

the greater importance of mechanical dispersion as

an effective mechanism of momentum exchange is
commonly accepted in the literature. On should point

out though that thermal dispersion is here not neglected,

as will be seen below.

Further, when treating turbulence with statistical

tools, the correlation �qu0u0 appears after application

of the time-average operator to the local instantaneous

NS equation. Applying further the volume-average pro-

cedure to this correlation results in the term �q/hu0u0ii.
This term is here recalled the macroscopic Reynolds

stress tensor (MRST). Further, a model for the (MRST)

in analogy with the Boussinesq concept for clear fluid

can be written as

�q/hu0u0ii ¼ lt/
2hDiv � 2

3
/qhkiiI ð5Þ

where

hDiv ¼ 1

2
rð/h�uiiÞ þ ½rð/h�uiiÞ�T
h i

ð6Þ

is the macroscopic deformation rate tensor, hkii is the

intrinsic average for k and lt/
is the macroscopic turbu-

lent viscosity. The macroscopic turbulent viscosity, lt/
,

is modeled similarly to the case of clear fluid flow and

a proposal for it was presented in [13] as,

lt/
¼ qcl

hkii
2

heii
ð7Þ

In a similar way, applying both time and volumetric

average to the microscopic energy equation, for either

the fluid or the porous matrix, two equations arise.

Assuming further the local thermal equilibrium hypothe-

sis, which considers hT fii ¼ hT sii ¼ hT ii, and adding up

these two equations, one has,

ðqcpÞfr � /huT fii
	 


¼ ðqcpÞfr � / h�uiihT fii þ hu0iihT 0
fi

i
	n

þhi�uiT fii þ hiu0 iT 0
fi

i

o

ð8Þ

A modeled form of (8) has been given in detail in the

work of [18] as,

ðqcpÞf/ þ ðqcpÞsð1� /Þ
� � ohT ii

ot
þ ðqcpÞfr � �uDhT ii

	 


¼ r � Keff � rhT ii
n o

ð9Þ

where, Keff, given by

Keff ¼ ½/kf þð1�/Þks�IþKtorþKtþKdispþKdisp;t ð10Þ

is the effective conductivity tensor. In order to be able to

apply (9), it is necessary to determine the conductivity

tensors in (10), i.e. Ktor, Kt, Kdisp and Kdisp,t. Following

[7], this can be accomplished for the tortuosity and ther-

mal dispersion conductivity tensors, Ktor and Kdisp, by

making use of a unit cell subjected to periodic boundary

conditions for the flow and a linear temperature gradient

imposed over the domain. The conductivity tensors are



E.J. Braga, M.J.S. de Lemos / International Journal of Heat and Mass Transfer 47 (2004) 5639–5650 5643
then obtained directly from the microscopic results for

the unit cell.

As mentioned earlier, here, thermal dispersion is not

neglected. Kuwahara and Nakayama [7] presented, for

an infinite medium formed by an array of square rods,

the Kdisp components in the longitudinal and transversal

directions, (Kdisp)XX and (Kdisp)YY, respectively. Their

expressions read,

ðKdispÞXX ¼
0:022

Pe2
D

ð1�/Þ kf ; PeD < 10

2:7 PeD
/1=2 kf ; PeD > 10

8<
:

ðKdispÞYY ¼
0:022

Pe1:7
D

ð1�/Þ1=4
kf ; PeD < 10

0:052ð1� /Þ1=2PeDkf ; PeD > 10

8<
:

ð11Þ

where

PeD ¼ Peð1� /Þ1=2; Pe ¼ Rep Pr; Rep ¼
juDjd

mf
ð12Þ

and d is the pore diameter.

The turbulent heat flux and turbulent thermal disper-

sion terms, Kt and Kdisp,t, which cannot be determined

from such a microscopic calculation, are modeled here

through the Eddy diffusivity concept, similarly to [8].

It should be noticed that these terms arise only if the

flow is turbulent, whereas the tortuosity and the thermal

dispersion terms exist for both laminar and turbulent

flow regimes.

Starting out from the time averaged energy equation

coupled with the microscopic modeling for the �turbu-
lent thermal stress tensor� through the Eddy diffusivity

concept, one can write, after volume averaging,

�ðqcpÞfhu0T 0
fi

i ¼ ðqcpÞf
mt/
rT

rhT fii ð13Þ

where the symbol mt/ expresses the macroscopic Eddy

viscosity, lt/ = qfmt/, given by (7) and rT is a constant.

According to (13), the macroscopic heat flux due to tur-

bulence is taken as the sum of the turbulent heat flux

and the turbulent thermal dispersion found by [18]. In

view of the arguments given above, the turbulent heat

flux and turbulent thermal dispersion components of

the conductivity tensor, Kt and Kdisp,t, respectively, are

expressed as

Kt þ Kdisp;t ¼ /ðqcpÞf
mt/
rT

I ð14Þ

In the equation set shown above, when the variable

/ = 1, the domain is considered as a clear medium.

For any other value of /, the domain is treated as a

porous medium.
4. Turbulence model

Transport equations for hkii ¼ hu0 � u0ii=2 and

heii ¼ lhru0 : ðru0ÞTii=q in their so-called high Rey-
nolds number form are fully documented in Pedras and

de Lemos [12–16] making use of the double decomposi-

tion concept and extended in de Lemos and Braga [21]

to incorporate buoyancy effects. Basically, for porous

media analysis, a macroscopic form of the governing

equations is here obtained by taking the volumetric

average of the time averaged equations set.

As explained in [12], different paths in obtaining a k-

equation have been proposed. Lee and Howell [9] and

Antohe and Lage [10] developed a macroscopic equation

for the turbulent kinetic energy formed as km ¼
hu0ii � hu0ii=2. De Lemos and co-workers [12–24] based

their model on hkii ¼ hu0 � u0ii=2. The relationship be-

tween these two quantities is [12]

hkii ¼ hu0 � u0ii=2 ¼ hu0ii � hu0ii=2þ hiu0 � iu0i=2

¼ km þ hiu0 � iu0i=2 ð15Þ

For that reason, transport equations for km ¼
hu0ii � hu0ii=2 and hkii ¼ hu0 � u0ii=2 are not equal

because, as seen, they represent two different quantities

being transported [12]. In this work, macroscopic turbu-

lent transport equations are given by [21]

q
o

ot
/hkii

	 

þr � �uDhkii

	 
� �

¼ r � l þ
lt/

rk

� �
r /hkii
	 
� �

þ P i þ Gi þ Gi
b � q/heii

ð16Þ

q
o

ot
/heii

	 

þr � �uDheii

	 
� �

¼ r � l þ
lt/

re

� �
r /heii
	 
� �

þ c1P i hei
i

hkii

þ c2
heii

hkii
Gi þ c1c3G

i
b

heii

hkii
� c2q/

heii
2

hkii
ð17Þ

where c1,c2,c3 and ck are constants, P i ¼
ð�qhu0u0ii : r�uDÞ is the production rate of hkii due to gra-

dients of �uD, G
i ¼ ckq

/hkii j�uD jffiffiffi
K

p is the generation rate of the

intrinsic average of k due to the action of the porous ma-

trix and Gi
b ¼ /

lt/
rt

b/g � rhT ii is the generation rate of

hkii due to the buoyant effects. Here, it is also important

to emphasize that mechanical dispersion was not consid-

ered in the transport of hkii and h eii, as was the case for
themeanmomentum equation (4). For highly porous and

permeable media, for a fluid flowing with a high value of

Rep, turbulence interactions are expected to transport

momentum and turbulent kinetic energy as a rate faster

than that due to dispersion mechanisms.

Further, the constants used in Eqs. (7),(16) and (17)

of the macroscopic j–e model were the same given by

Launder and Spalding [44] for clear medium (/ = 1

and K ! 1). They read,
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cl ¼ 0; 09; c1 ¼ 1; 44; c2 ¼ 1; 92; c3 ¼ 1; 0;

rk ¼ 1; 0; re ¼ 1; 3; rT ¼ 0; 9 ð18Þ

For a porous medium, these constants may present dif-

ferent values but, as a first approximation, they were ta-

ken as equal to those in [44], as suggested by Lee and

Howell [9].

Further, standard wall function has been employed

for calculating the flow near to the walls, as discussed

in [19]. The use of such simpler model is justified due

to the final velocity values close to the interface will be

a function not only of inertia and viscous effects in full

Navier–Stokes equation, but also due to the Darcy

and Forchheimer resistance terms. Therefore, eventual

errors coming from inaccurate use of more appropriate

boundary conditions will have little influence on the final

value for velocity close to the wall since drag forces,

caused by the porous structure, will play also an impor-

tant role in determining the final value for the wall veloc-

ity. Thus, logarithm wall laws are simple to be

incorporated when simulating flow over rigid surfaces

and for that they have been modified to include surface

roughness and to simulate flows over irregular surfaces

at the bottom of rivers [48]. Detailed information on

such numerical treatment can be found in [13–16].
5. Numerical method and solution procedure

The numerical method employed for discretizing the

governing equations is the control-volume approach

with a generalized grid. A hybrid scheme, upwind differ-

encing scheme (UDS) and central differencing scheme

(CDS), is used for interpolating the convection fluxes.

The well-established SIMPLE algorithm [45] is followed

for handling the pressure-velocity coupling. Individual

algebraic equation sets were solved by the SIP procedure

of [46]. In addition, concentration of nodal points closer

to the walls reduces eventual errors due to numerical dif-

fusion which, in turn, are further annihilated due to the

hybrid scheme here adopted.
Table 1

Some previous laminar numerical results for average Nusselt number

Ram

10 102

Walker and Homsy, [36] – 3.09

Bejan, [37] – 4.2

Beckerman et al., [39] – 3.11

Gross et al., [40] – 3.14

Manole and Lage, [41] – 3.11

Moya et al., [42] 1.065 2.80

Baytas and Pop, [43] 1.079 3.16
6. Results and discussion

In order to guarantee grid independent solutions,

runs were performed in grids up to 110 · 110 control

volumes, using stretched meshes for turbulent flow with

Ram = 106. The percent difference of the averaged Nus-

selt number at the hot wall, compared with results ob-

tained with the 80 · 80 grid, is 1.15%. Therefore, the

80 · 80 stretched mesh seems to be refined enough near

to the walls to capture the thin boundary layers that

appear along the vertical surfaces.

6.1. Laminar model solution

Runs for laminar model solution were performed

with an 80 · 80 control volumes in a stretched grid like

shown in Fig. 1(b). The present results were performed

with / = 0.8 and the Prandtl number and the conductiv-

ity ratio between the solid and fluid phases are assumed

to be a unit. The available literature shows that for the

non-Darcy region, [47], the fluid flow and the heat trans-

fer depend on the fluid Rayleigh number, Raf and the

Darcy number, Da, when other parameters, e.g., (Poros-

ity, Prandtl number, conductivity ratio between the fluid

and solid matrix) are fixed.

Thus, herein, porosity, Prandtl number and conduc-

tivity ratio were kept fixed. It is also important to

emphasize that all runs were performed without the con-

tribution of the thermal dispersion, Kdisp. However, a

few cases considering the effect of thermal dispersion

on the Nusselt number were also computed in order to

show its influence on the overall heat transport.

Table 1 shows some previous laminar numerical re-

sults for Ram ranging from 10 to 104. Table 2 shows

the average Nusselt number for different Darcy numbers

for Ram ranging from 10 to 104. It is clearly seen from

the Table 2 that for a fixed Ram the lower the permeabil-

ity, the higher the average Nusselt number at the hot

wall. It is evident that different combinations of Raf
and Da yields different heat transfer results. The increas-

ing of the fluid Rayleigh number increases the natural
for Ram ranging from 10 to 104

103 104

7 12.96 51.0

15.8 50.8

3 – 48.9

1 13.448 42.583

8 13.637 48.117

1 – –

14.06 48.33



Table 2

Behavior of the average Nusselt number for different values of Da for Ram ranging from 10 to 104

Da Kdisp Ram

10 102 103 104

10�7 Kdisp given by (11) 1.0907 3.0866 12.9641 41.7693

10�7 Kdisp = 0 1.0902 3.0831 12.8930 38.6494

10�8 Kdisp = 0 1.0908 3.0979 13.2751 43.5799

10�9 Kdisp = 0 1.0910 3.0985 13.3848 46.1659

10�10 Kdisp = 0 1.0912 3.1016 13.4289 47.2653
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convection inside the enclosure. Since the Ram is fixed, a

higher fluid Rayleigh number is associated with a less

permeable media (i.e. lower Darcy number). Its also

clearly seen from Table 2 that the Nusselt numbers com-

puted with the thermal dispersion are higher than those

computed without it for Da = 10�7. It seems evident that

this additional mechanism increases heat transfer. Table

2 also shows that for higher values of Ram, the effect of

the thermal dispersion on the Nusselt number are more

pronounced. However, although not shown here, the

computational cost due to the inclusion of this mecha-

nism increases significantly. In comparison with results

of Table 1, more accurate simulations were obtained

for lower permeability media.

The local Nusselt number on the hot wall for the

square cavity at x = 0 is defined as,

Nu ¼ hL=keff ) Nu ¼ ohT iv

ox

� �
x¼0

L
TH � T C

ð19Þ

and the average Nusselt number is given by,

Nu ¼ 1

H

Z H

0

Nudy ð20Þ

Fig. 2 shows streamlines and isotherms for a laminar

model solution in a square cavity filled with porous med-

ium for Ram ranging from 103 to 106. The cavity is

heated of the left side and cooled from the opposing

side. The other two walls are kept insulated.

For lower Rayleigh number values, Ram 6 102, not

shown here, the isotherms are almost parallel to the

heated walls, indicating that the most part of heat trans-

fer is by conduction mechanism, while the streamlines

are a single vortex with its center in the center of the

square cavity.

At Ram = 103, Fig. 2(b), the streamlines are an elliptic

flattened vortex. In contrast with the clear cavity case

the porous matrix makes the flow be more intense near

the heated and cooled walls and damped in the center

due to the presence of the porous matrix. Corresponding

Isotherms are shown in Fig. 2(a). The enhancing of the

natural convection begins to distort the isotherms. The

vortex is generated due the horizontal temperature gra-

dient across the section. This gradient, dT/dy, is negative

everywhere, giving a clockwise vertical rotation.
Increasing Ram to 104, Fig. 2(d), the central vortex

becomes rectangular and the effect of convection is

now more pronounced in the isotherms, as can be seen

in Fig. 2(c). The flow pattern comprises a primary cell

of relatively high velocity, circulating around the entire

cavity. Temperature gradients are stronger near the ver-

tical walls, but decrease in the center.

For higher values of Rayleigh numbers, Ram = 105

and 106, the flow moves faster close to heated walls,

Fig. 2(f) and (h), and the isotherms tends to stratifica-

tion, Fig. 2(e) and (g), respectively.

6.2. Turbulent model solution

It is important to emphasize that the main objective

of this work is not to simulate the transition mechanism

from laminar regime to fully turbulent flow, which in-

volves modeling of complex physical processes and

hydrodynamic instabilities. Here, the aim of this work

is to establish a Racr below which both turbulent and

laminar models did not differ substantially as far as pre-

dictions of overall Nu are of concern. Therefore, a strat-

egy for determining the range of validity of a laminar

flow solution was to simulate the laminarization of the

flow when the Raleigh number is reduced.

For clear flows, when Raf is varied, the literature

often refers to laminar and turbulent ‘‘branches’’ of

solutions as Raf passes a critical value. When a turbu-

lence model is included, the turbulent solution can devi-

ate from the laminar branch for Raf > Racr and follows

its turbulent branch. According to [31], the deviation of

the averaged wall-heat transfer between laminar and tur-

bulent fields depends on the turbulence model used.

When the standard j–e model is used, the laminar

solution is not a solution of the equation system, be-

cause it does not satisfy the boundary condition, namely

wall function, for the kinetic energy at the first inner grid

point close to the wall. Below a critical Raf number, the

standard j–e model gives a turbulent viscosity close to

zero everywhere. This reduction of turbulent transfer

can be interpreted as an indication of the laminarization

process. However, above this critical value, the turbulent

viscosity suddenly increases and a turbulent solution is

obtained.



Fig. 2. Isotherms and streamlines for laminar model solution for a square cavity filled with porous material with / = 0.8, Da = 10�7

and Kdisp = 0.
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Fig. 3. Isotherms and streamlines for turbulent model solution for a square cavity filled with porous material with / = 0.8, Da = 10�7

and Kdisp = 0.
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Table 3

Comparison between laminar and turbulent model solutions for the average Nusselt number at the hot wall for Da = 10�7 and 10�8

and Ram ranging from 10 to 106

Model solution Ram

10 102 103 104 105 106

Da = 10�7 with Kdisp given by (11)

Laminar 1.0907 3.0866 12.9641 41.7693 110.1664 –

Turbulent 1.0910 3.0896 13.0652 43.2809 120.4175 –

Da = 10�7 with Kdisp = 0

Laminar 1.0902 3.0831 12.8930 38.6494 87.3268 169.9404

Turbulent 1.0907 3.0860 12.9956 40.3077 100.6035 235.5515

Da = 10�8 with Kdisp = 0

Laminar 1.0908 3.0979 13.2751 43.5799 109.1877 222.5915

Turbulent 1.0910 3.1006 13.3525 44.7605 119.1966 277.0930

1x101 1x102 1x103 1x104 1x105 1x106

Ram

0

50

100

150

200

250

300

350

 Nu

0

100

200

300

-50

50

150

250

Comparison between laminar
 and turbulent model solutions 

for Da=10-7 and Da=10-8 :
 Kdisp= 0, φ=0.8, Pr=1, ks /kf=1.

Laminar model solution
Turbulent model solution

Ra cr ≅ 10 4

Da=10-7

Da=10-8

Fig. 4. Comparison between the laminar and turbulent model

solutions with the averaged Nusselt number at the hot wall.
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With this ideas in mind, this part of the work tries to

find for flow in porous media, as done in the literature

for the clear fluid case, like in [31] and [33], a critical

Rayleigh, Racr, for which simulations with the turbu-

lence model deviates from those considering laminar

flow. In order to achieve this goal, the turbulence model

is first ‘‘switched off’’ and the laminar branch of the

solution is found when increasing the Rayleigh number,

Ram. Subsequently, the turbulence model is included so

that the solution merges to the laminar branch for a

reducing Ram and for Ram < Racr. This convergence of

results as Ram decreases can be seen to characterize

the so-called laminarization phenomenon.

Calculations for turbulent model solution were per-

formed with the same grid used for the laminar model

solution and the parameters (porosity, Prandtl number

and conductivity ratio between the fluid and the solid

matrix) are fixed.

Fig. 3 shows the isotherms and streamlines for turbu-

lent model solution for Ram ranging from 103 to 106.

For Ram 6 102, not shown here, the solution with the

turbulence model gives nearly the same values as those

obtained with laminar flow computations. Even for

Ram up to 106 the flow patterns resembles those from

the laminar model solution, but the values of the stream-

lines and the average Nusselt numbers at the hot wall are

significantly increased.

Table 3 shows the average Nusselt number at the hot

wall for the two types of regime, namely laminar and

turbulent for two distinct Darcy numbers. Table 3 shows

that the turbulent solution deviates from the laminar

one for Ram greater than around 104. Consequently,

the calculations herein suggest that a critical value for

Rayleigh is of the order of 104 and from that value on

simulations considering a turbulence model are higher

than their laminar counterpart.

Fig. 4 shows the behavior of the average Nusselt

number versus the Rayleigh number for the two models

here considered, namely the laminar and the turbulence
models for Da = 10�7 and Da = 10�8 illustrating the two

regions mentioned above. It is clearly seen from Fig. 4

that Racr is not affected due to small variations on the

Darcy number.

In the first region for Ram < Racr � 104, both laminar

and turbulent flow simulations give nearly the same re-

sults. After this point, Nusselt numbers calculated with

a full turbulence model give higher values for Nu.
7. Conclusion

Computations for laminar and turbulent flows with

the macroscopic j–e model with a wall function for nat-

ural convection in a square cavity totally filled with por-

ous material were performed. The cavity was heated

from the left and cooled from the opposing side. The

numerical values yielded generally satisfactory agree-
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ment with similar data available in the literature. This

agreement was also found when comparing average

Nusselt numbers along the hot wall.

In general, when fluid and medium properties (Pran-

dtl number, porosity and conductivity ratio between the

fluid and the solid matrix) are kept fixed and Ram is con-

stant, the lower the Darcy number (or media permeabil-

ity), the higher the average Nusselt number at the hot

wall. The increasing of the fluid Rayleigh number in-

creases the natural convection inside the enclosure. Since

the Ram is fixed, a higher fluid Rayleigh number is asso-

ciated with a less permeable media (i.e. lower Darcy

number). In the end, for Ram values greater than around

104, both laminar and turbulent flow solutions deviate

from each other, indicating that such critical value for

Ram was reached. Accordingly, in order to observe that,

the turbulence model was first switched off and the lami-

nar branch of the solution was found when increasing

the Rayleigh number, Ram. Subsequently, the turbulence

model was included so that the solution merged to the

laminar branch for Ram < Racr. This convergence of

results as Ram decreases can be seen as an estimate of

the so-called laminarization phenomenon.

Ultimately, the inclusion of thermal dispersion in-

creases the Nusselt number on the hot wall by a fair

amount for higher Ram, since it represents an additional

mechanism of mixing. However, the inclusion of this ef-

fect also significantly reduces convergence rates and

associated computational cost. Further, Racr is not af-

fected due to the inclusion of the thermal dispersion

mechanism, Kdisp, or due to small variations on the

Darcy number.
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