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Bulk Acoustic Resonator FEM-BEM Simulation 

 

INTRODUCTION 

 

In RF communication systems, Bulk Acoustic Wave (BAW) filters can offer superior performance 

and reduced size and cost compared to SAW and ceramic filters. The purity of the resonance and the 

quality factor Q of BAW resonator are key parameters in order to reach filter specifications. In a 

Solidly Mounted Resonator (SMR), the thickness resonator (thin piezoelectric layer between two 

electrodes) is deposited on a multi-layered Bragg reflector that is designed to decouple resonator from 

substrate (Fig. 1). In a Film Bulk Acoustic Resonator (FBAR), the thickness resonator (thin 

piezoelectric membrane between two electrodes) is also deposited on a multi-layered Bragg reflector 

that is designed to decouple resonator from substrate (Fig. 2). Thus, in both cases, the coupling 

between resonator and substrate has a major influence on the quality factor (elasto-dynamic radiation 

in the substrate) and spurious modes (resonances of laterally propagating pseudo-Rayleigh waves) and 

must be accurately modeled. 

 

 
 

 
 

Figure 1.  Geometry of a SMR 

 

 

Isotropic half-space silicon substrate   
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Figure 2.  Geometry of a FBAR 

 

NUMERICAL MODEL 

 
The resonator and the Bragg reflector constitute a close solid domain Ωs containing a piezoelectric sub-

domain Ωp (blue layer) (Fig. 1) and (Fig. 2). This domain is in contact with an infinite homogeneous 

isotropic elastic half-space   by surface (Γ) pointing towards  . All the variables exhibit an 

implicit je dependence where  denotes the angular frequency and  the time. In Ωs, the physical 

quantities of interest are the displacement vector u and the electric potential . The nodal values of u 

and  are the unknowns of the following set of finite element equations [1]. 
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Where the subscript Ω applies to nodes inside Ωs excluding (Γ , and the subscript Γ applies to nodes on 

(Γ). (resp. Q) is the vector of the nodal values of the electric potential (resp. electrical charge), U 

(resp. F) is the vector of the nodal values of the displacement (resp. force). [K], [Kp] and [Kd] are 

respectively the mechanical, piezoelectric and dielectric stiffness matrices. [M] is the consistent mass 

matrix. As energy is provided by the electrical voltage generator, F = 0 (no applied external 

mechanical force) and either  =0 where 0 is the driving voltage (for each node on the hot 

electrode) or Q = 0 (for the nodes inside Ωp excluding the hot electrode). 

The displacement u on  is given by the integral representation [2] and [3]. 

 

Isotropic half-space silicon substrate   
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t is the vector of the surface force density applied on (Γ), 'r r  the algebraic distance between source 

and observation points, where r and r’ are positions vectors. [G( r - r’)] is the Green tensor of the 

isotropic half-space with stress-free surface. It is obtain using the Helmholtz decomposition of elasto-

dynamic equation motion in the spatial wave number domain [2] and [3]. 

 

For each finite element e of (Γ), the spatial discretization of t is performed by using the classical FEM 

interpolation functions [N(e)] [4]. 

 

 ( )    t Te e er N r      (3) 

 

Where e
T is the elementary nodal vector of surface force density. Equation (3) is combined with 

equation (2) for each node on (Γ) to lead after assembling to the matrix equation. 
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In the considered problem, nodal forces FΓ appearing in equation (1) are reaction forces of the 

substrate on Ωs expressed as [4]. 
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This last equation is combined with equation (5) to get the matrix equation. 
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Where [Z()] is an impedance matrix. It is a frequency dependent, complex, non-symmetric and fully 

populated matrix. Thus, the final set of equations is obtained by combining equations (1) and (7). 
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RESULTS 

 

Two-dimensional and three-dimensional simulations are conducted for an aluminium nitride (AlN) 

piezoelectric resonator with molybdenum (Mo) electrodes isolated from silicon substrate by a four-

layer Bragg reflector made of tungsten-silicon oxide (W/SiO2) stacks. Layer thicknesses of Bragg 

reflector are all set to /4 where  is the wavelength of the longitudinal wave. Layer widths are 50 m 

for the top electrode and 75 m for the other layers. Material losses are not included in the model. 

 

Resonator impedances (modulus and phase) computed with 1D, 2D and 3D FEM-BEM and compared. 

Main differences between simulations and associated physical mechanisms are discussed hereafter: 
 

i) 2D and 3D results display spurious peaks which are related to the lateral resonances of the pseudo-

Rayleigh waves [5]. Only pseudo-Rayleigh waves which are not (or are weakly) radiating into the 

substrate during their propagation can build-up the resonance and appear as spurious peak in 

impedance curves. 

 

ii) Effective coupling coefficients k2 are computed according to the formula: 
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Where fs and fp are the series (maximum of admittance modulus) and parallel (minimum of admittance 

modulus) resonance frequencies respectively. Lower coupling coefficients are obtained in the case of 

the 3D model (Table 1 and Table 2). This slight decrease results from the vibrational energy stored in 

the lateral waves. 
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iii) Quality factors are lower in the 2D and 3D simulation (Table 1 and Table 2) due to the additional 

radiation into the substrate of the lateral pseudo-Rayleigh waves. As internal losses are not included in 

the model, 2D computed values remain higher than commonly measured values, while 3D computed 

values are near to commonly measured values. It can also be noted that the computed quality factor is 

lower at parallel resonance (Qp) than at series resonance (Qs). This last result is in good agreement 

with a previous analysis of the energy loss mechanisms in SMR [6]. 

 

 

RESULTS FOR THE SMR 

 

 
 

Figure 3.  Resonator impedance modulus and phase versus frequency. 

 

Table 1. Computed quality factors and effective coupling coefficients 

 fs fp k2 Qs   @-3dB Qp   @-3dB 

1D 1959.27 MHz 2009.74 MHz 6.04 % 9752 9484 

2D 1959.31 MHz 2005.81 MHz 5.59 % 2730 633 

3D 1959.36 MHz 2002.30 MHz 5.18 % 1447 570 
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RESULTS FOR THE FBAR 

 

 

Figure 4.  Resonator impedance modulus and phase versus frequency. 

 

Table 2. Computed quality factors and effective coupling coefficients 

 fs fp k2 Qs   @-3dB Qp   @-3dB 

1D 1973.87 MHz 2032.64 MHz 6.93 %   

2D  1973.15 MHz  2025.97 MHz  6.27 % 19731.50 1873.47 

 

 

CONCLUSION 

 

To simulate Solidly Mounted Resonators, two-dimensional and three-dimensional numerical models, 

based on the FEM representation of the resonator and the Bragg reflector and the BEM description of 

the substrate, have been developed. Elastodynamic energy radiation into the substrate is included in 

the model and thus SMR and FBAR quality factors are evaluated. Numerical results are presented for 

an aluminium nitride resonator with molybdenum electrodes operating at 1.96 GHz and decoupled 

from the substrate by a tungsten-silicon dioxide de Bragg reflector. 
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