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Dynamic Model for 3-D Magnetostrictive Transducers
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A comprehensive analytical framework is developed for the study of magnetostrictive transducers with arbitrary geometries operated
in dynamic regimes. Weak form equations are derived from Maxwell’s equations and linear momentum without restricting the form of
the constitutive behavior of the magnetostrictive material. For validation, the framework is implemented for a unimorph beam actuator
which has both active and passive media.

Index Terms—Finite-element modeling, Galfenol, magnetostrictive transducers, nonlinear modeling.

I. INTRODUCTION

G ALFENOL (Fe-Ga) is an emerging magnetostrictive
material which can exhibit moderate magnetostriction

and mechanical properties similar to steel. These unique char-
acteristics offer the possibility of creating structural elements
or fasteners with actuation and sensing properties. Actuators
have been proposed that exploit the mechanical robustness of
Galfenol [1], [2], but the development of structures with inte-
grated 3-D actuation and sensing has not been fully explored.
While 3-D models for Galfenol constitutive behavior have been
developed [3]–[5], a general model for 3-D dynamic behavior
of Galfenol-driven systems is still necessary.

Transducer-level models are useful for device design, opti-
mization, and control [6]–[9]. Much attention has been given
to devices utilizing Terfenol-D loaded unidirectionally. Dapino
et al. [10] employed the Jiles-Atherton model augmented by
an effective field due to prestress to model the 1-D constitu-
tive behavior of Terfenol-D. The magnetostriction calculated
from the constitutive model is used as input to the wave equa-
tion for the structural dynamics of a rod. Huang et al. [11] also
used the Jiles-Atherton model for 1-D characterization of a Ter-
fenol-D actuator but included eddy-current losses in the energy
formulation and used a lumped parameter model for the struc-
tural dynamics; the effect of dynamic stress was not considered.
Sarawate and Dapino [12] developed a decoupled model which
included time delay from eddy currents through solution of the
magnetic field diffusion equation with constant permeability.
Engdahl and Bergqvist [13] calculated dynamic losses in a 1-D
actuator by fully coupling the magnetic field diffusion equation,
the wave equation for structural dynamics, and a lumped param-
eter model for the magnetic circuit. Bottauscio et al. [14] mod-
eled losses from eddy currents using the field diffusion equation
along with the Preisach model to calculate the nonlinear per-
meability and stress-induced flux density changes. All of these
models employ the externally applied magnetic field as an input.
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Some attention has also been given to higher-dimension
models. Datta et al. [15], [16] used classical laminated plate
theory with the Armstrong magnetomechanical model to
characterize laminated sensors and actuators in the absence of
current-induced magnetic fields. Zhou and Zhou [17] developed
a dynamic finite-element model for a unimorph actuator with
one-way magnetomechanical coupling. The 2-D magnetostatic
finite-element model formulated by Kannan and Dasgupta
[18] utilizes a nonlinear constitutive behavior for bidirectional
coupling and includes current-induced magnetic fields and
electromagnetic body forces. Mudivarthi et al. [19] formulated
a fully-coupled, magnetostatic formulation for stress-induced
flux density changes in Galfenol with no current-induced
fields. The 3-D model of Kim and Jung [20] employs one-way
coupling with force due to magnetostriction driving a coupled
fluid-structural model for a sonar transducer. Aparicio and
Sosa presented a 3-D [21], fully-coupled finite-element model
including dynamic effects and implemented it for a magne-
tostrictive material using a single element.

This work provides a comprehensive analytical framework
for design and characterization of 3-D magnetostrictive trans-
ducers. The effects of eddy currents, structural dynamics, flux
leakage, and nonlinear magnetostrictive behavior are simulta-
neously included. A general implementation is given which in-
cludes surrounding air and current-carrying coils, and describes
the full input-output relationship in 3-D between voltage, force,
and displacement. The framework is demonstrated by analyzing
the step response of a 3-D unimorph actuator with a linear ma-
terial model.

II. MODEL DEVELOPMENT

A. Governing Equations

The behavior of an electro-magneto-mechanical system is
governed by Maxwell’s equations and the conservation of linear
momentum. The point-wise or strong form equation for the spa-
tial and temporal dependence of magnetic field is

(1)

(2)

when displacement current is negligible, as is typical
for the operating range of magnetostrictive transducers
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( 30 MHz). Equation (1) represents both Ampère’s law and
the Lenz-Faraday law for ohmic materials with conductivity

. The total current density is the source from an applied
voltage and the eddy-current term . The eddy-current term
is expressed with the ungauged vector magnetic potential ,
defined from the magnetic flux density

(3)

The strong form governing the spatial and temporal depen-
dence of displacement and stress is

(4)

where is density, is viscous damping per volume, and is
body force per volume. The infinitesimal strain is kinematically
related to displacement according to

(5)

The weak form equations, approximately solved by the finite-
element method in Section II-B, are obtained by weighting (1)
and (4) with and (see Appendix A)

(6)

(7)

The weak form represents a balance of the internal and external
virtual work, since the kinematic relationships
and appear as work conjugates with and .
Additionally, the surface traction at the mechanical boundary
is and the tangent field at the magnetic boundary is

. With these relationships, the system equations
become

(8)

(9)

These virtual work expressions describe both coupled and
uncoupled systems. Coupling occurs in systems with active
materials, having coupled constitutive behavior for magnetic
field, flux density, stress, and strain. Though magnetome-
chanical coupling can occur in systems having only passive

materials, through the Lorentz force as in moving-iron systems,
the effect is negligible for the small motions typical of magne-
tostrictive actuators and sensors and is not considered here.

B. 3-D Finite-Element Formulation

In the finite-element method, the solution domain is dis-
cretized into finite elements and the integrations in the weak
form (6) and (7) are performed over elements. The solution
variables, vector potential, and displacement in the element are
interpolated from the nodal values. Therefore, only the inter-
polation or shape functions are integrated resulting in matrix
equations for the nodal values of the vector potential and dis-
placement, stored in the vectors and , respectively. For
passive electromagnetic systems, it is increasingly common to
use edge elements for the magnetic field rather than a nodal for-
mulation with the ungauged vector magnetic potential. While
this leads to better conditioned matrices, the nodal formulation
is used here to enable coupling with mechanical variables.

The structure of the finite-element model contributes to the
understanding of coupled magnetomechanical systems operated
under electromagnetically quasi-static conditions

(10)

The mass matrix is singular, containing only contributions
from the mechanical mass, . The absence of entries from
the electromagnetic domain is a consequence of neglecting
Maxwell’s displacement current and prevents the finite-element
model from characterizing electromagnetic radiation, which
does not occur in the typical operating regime of magnetostric-
tive devices ( MHz). Sources of damping include the
internal material damping (mechanical) which yields and
eddy currents which give rise to . The magnetic stiffness

depends on magnetic permeability and characterizes the
ability of the system to magnetically energize the system. The
coupling matrix characterizes the ability of the system to
transfer mechanical energy, applied through surface tractions
in the mechanical load vector , to magnetic energy and
conversely, to transform magnetic energy, applied through
current in the magnetic load vector , to mechanical energy.
The derivation of these matrices is shown in Appendix B.

C. 3-D Dynamic Implementation

In this section, a unimorph actuator (Fig. 1) is studied with the
fully 3-D and dynamic finite-element model (10). The model
is implemented in COMSOL Multiphysics which provides a
meshing tool, local to global matrix assembly, and a post-pro-
cessing and visualization toolbox. This software allows for par-
titioning the solution domain while allowing for the different
subdomains to have different degrees of freedom. COMSOL
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Fig. 1. Unimorph actuator employed for model validations.

Multiphysics also allows specifying essential boundary condi-
tions on internal boundaries, which is important because the me-
chanical constraints are inside the surrounding air volume.

The coefficient matrices in (51) and (52) for magnetostrictive
material behavior can in general be calculated from a nonlinear
constitutive model, for example the efficient model [5]. Consti-
tutive models are most commonly formulated as

(11)

(12)

with derivatives

(13)

The coefficients relating to can then be
calculated

(14)

A difficulty arising in this process is that the derivatives in (13)
need to be calculated at (field and stress at the cur-
rent time) which in the finite-element model are functions of

and , the unknowns. The process of calculating the co-
efficient matrices in (51) and (52) is iterative because avail-
able 3-D constitutive models [3]–[5] do not have an analytic
inverse. It is therefore a vector process. All components of
and must be calculated simultaneously with numerical in-
version, using a technique such as the Newton-Raphson method.
COMSOL Multiphysics does not have the capability of imple-
menting vector functions so a single set of linear coefficients
is used for the modeling in this section. To ensure that a linear
material model is accurate, the actuator is operated about a bias
field from a dc current; all reported values are referenced to this
bias. The boundary conditions are on the air boundary
and on the bottom face of the block used for mounting
the beam.

D. Step Response Measurement and Dynamic Efficiency

First, a step response is measured by supplying a step input
voltage source volts to the coil. The finite-element

model requires a source current density as input. This den-
sity can be calculated in the circumferential direction from the
dc resistance of the coil and the cross sectional area of the
coil wire . The coil is modeled as a solid
cylinder with its center on the -axis, so the 3-D supplied cur-
rent density can be calculated from the circumferential compo-
nent according to

(15)

Two quantities measured during the step response are com-
pared with the model, the wire current in the coil and the vertical
displacement of the beam tip (positive downward). The displac-
ment is measured with a Keyence laser displacement sensor.
The current is calculated as follows. The total current density
is the sum of the source current density and the back EMF, or
the opposing current/eddy current from the Lenz-Faraday law,

. The total circumferential current density then is

(16)

and the wire current in the coil is then calculated from the
average circumferential current density averaged over the coil,

. The vertical displacement is calculated from the
model by averaging the vertical displacement of the top edge
of the Galfenol layer on the free end.

The elastic modulus of the brass substrate is 120 GPa and its
density is 8400 kg/m . The elastic modulus of the steel base
is 200 GPa and its density is 7860 kg/m . The electrical con-
ductivity of copper is S/m. However, this
is scaled by since there are voids within the coil winding
with copper taking up of the cross section (the ratio of the
area of a circle to the area of a square). The conductivity of the
brass substrate is and both steel and Galfenol have con-
ductivities of . The permeability of the steel flux path is
isotropic, . The base for clamping the beam is made
of nonmagnetic steel; a permeability of is assumed. Brass is
also nonmagnetic.

Model and experiment step responses are shown in Fig. 2. The
voltage response is typical of a linear inductor-resistor electrical
circuit and is described accurately by the model. The voltage
step gives an impact-like input to the mechanical domain of the
system through magnetomechanical coupling. As a result, the
fundamental mode is excited and observed in both the measure-
ment and the simulation. The fundamental frequency of the 3-D
beam is the same as the measured frequency, 620 Hz, which also
agrees with Euler beam theory.

A power efficiency study of the unimorph actuator shows that
the two greatest sources of inefficiency are the power loss to the
back EMF of the coil and the power loss due to flux leakage in
the air. From (8), the input power to the system is

(17)
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Fig. 2. Voltage step response of unimorph actuator with 8.22 volts input.

where the variation is replaced with a time derivative. The input
power is expended in the magnetic power of each subdomain

(18)

and in the dynamic losses of each subdomain

(19)

The most significant power sinks are plotted with the power
source in Fig. 3(a). At the beginning of the step response,
nearly all of the power is consumed in dynamic losses. Fig. 3(b)
shows the total dynamic losses along with losses

and . The most significant loss is in the coil
which is the back EMF, followed by the steel and a negligible
amount in the Galfenol driver. The most significant power
sinks are shown as a fraction of input power in Fig. 4. This
shows that initially, the back EMF accounts for nearly all of
the power consumption. As the system approaches steady-state

begins to dominate with , flux leakage to
air, accounting for 65% of the power. The magnetic power
supplied to the Galfenol driver, accounts for at most
5% of the power consumption.

E. Quasi-Static Power Efficiency

A quasi-static simulation (0.1 Hz) provides more detail re-
garding the power loss to flux leakage in the air, . Ad-
ditionally, it demonstrates the capability of the 3-D finite-ele-
ment model to calculate the spatial dependence of the flux den-

Fig. 3. Power consumption during voltage step input. (a) Power input and
sinks; (b) dynamic losses due to coil back EMF and eddy currents in steel parts
and Galfenol driver.

Fig. 4. Power consumption as a fraction of input power during voltage step
input.

sity (Fig. 8), magnetic field (Fig. 9), strain (Fig. 10), and stress
(Fig. 11).

The power traces
and are shown in Fig. 5 and the same power sinks are
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Fig. 5. Quasi-static (0.1 Hz) power consumption.

Fig. 6. Quasi-static (0.1 Hz) power consumption as a fraction of power input.

shown as a fraction of in Fig. 6. Flux leakage to the air
accounts for 82% of the input power while only 5% is supplied
to the Galfenol driver. The conversion efficiency of magnetic
energy into mechanical energy of the Galfenol driver is calcu-
lated from the magnetomechanical coupling

(20)

The conversion efficiency is a function of geometry, coupling
matrix , permeability , and stiffness . This calculation is
shown in Fig. 7. The conversion efficiency is close to 50%,
however this analysis shows that the efficiency of the overall
system is poor since only 5% of the input power is supplied
to the Galfenol layer, which in turn has a near 50% conversion
efficiency. The geometry of the actuator is therefore the chief
reason for the poor efficiency. It can be improved by reducing
the air gap thereby reducing flux leakage or improving the coil
geometry to reduce the back EMF. Ideally, the flux path should

Fig. 7. Magnetomechanical coupling efficiency.

Fig. 8. FEM solution for flux density.

Fig. 9. FEM solution for magnetic field.

not include air since its permeability is much lower than the per-
meability of Galfenol. Additionally, a long narrow coil is gen-
erally more efficient than a short wide coil.

III. CONCLUDING REMARKS

The finite-element method was employed to describe the
spatial and temporal dependence of the flux density, strain or
displacement, magnetic field, and stress in 3-D magnetostric-
tive transducers. A general formulation was developed for
magnetostrictive transducers which allows for subdomains
to have different degrees of freedom. The virtual work was
derived from the strong form or partial differential equation
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Fig. 10. FEM solution for strain.

Fig. 11. FEM solution for stress.

description, without the use of assumptions such as linearity on
the material constitutive behavior.

A fully 3-D and dynamic implementation was used to study
the magnetoelastic response and efficiency of a unimorph ac-
tuator. From the virtual work, expressions were developed for
the input power, magnetic field power, and power lost to eddy
currents. Furthermore, a method for calculating the magnetome-
chanical energy conversion efficiency was developed which in-
cludes geometry dependence. For this particular design, it was
shown that the geometry of the transducer is not optimal com-
pared to the coupling efficiency of Galfenol, shown to be nearly
50%. The analysis permits to quantify the adverse effects of
back EMF, eddy currents, and flux leakage in 3-D.

APPENDIX A
DERIVATION OF WEAK FORM EQUATIONS OF MULTIPLE

SUBDOMAINS

The weak form is derived in a straightforward manner uti-
lizing indicial notation and defining the permutation tensor

(21)

Using the permutation tensor, the cross-product is
and the curl is . Also,

switching the order gives . In Einstein
notation, the equations to be solved are

(22)

(23)

Flux density is kinematically related to vector magnetic poten-
tial and strain to displacement. The magnetic field in (22) is re-
lated, by a material constitutive law, to flux density and strain, if
the material is magnetostrictive, or simply to the flux density for
passive materials or free space. The stress in (23) is also related
to flux density and strain for magnetostrictive materials. For pas-
sive materials the stress is only related to the strain. With the
kinematic relationships and the material constitutive laws, the
two initial boundary value problems (22) and (23) can be for-
mulated with dependent variables vector magnetic potential and
displacement and source terms current density and body force.
Essential boundary conditions are specified vector potential and
displacement. A typical system to be solved is surrounded by
an air volume, chosen sufficiently large so that on the
boundary. In the weak form, the natural boundary conditions
emerge as work terms applied to material boundaries, arising
from the tangential component of magnetic fields applied at the
boundary and the traction force applied to the boundary.

The weak form is derived from the method of weighted resid-
uals applied to (22) and (23)

(24)

(25)

where and are kinematically admissible test functions
(zero where essential boundary conditions exist.) The volumes

and are the subdomains for which flux density and me-
chanical displacement are defined, respectively. Consider for
example the hypothetical system in Fig. 12. The displacement
volume consists of the magnetostrictive material and the steel
flux path, which is deformed by the magnetostrictive material
and by externally applied traction forces. The flux density
volume consists of the entire domain since the current-carrying
coil results in flux density over the entire domain.

Integration by parts gives for the first terms in (24) and (25)

(26)

(27)
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Fig. 12. Hypothetical system with a magnetostrictive material, flux return path,
and drive coil in an air volume.

Applying the divergence theorem to the first term in each of the
above gives

(28)

(29)

Substitution of these relations into (24) and (25) along with
and

, gives

(30)

(31)

In the Galerkin method, the weighting functions have the same
basis as the dependent functions which in this case are and

. The weighting functions can also be thought of as virtual
generalized displacements, and . The weak
form, in Einstein notation, is then

(32)

(33)

or in matrix notation

(34)

(35)

APPENDIX B
FINITE-ELEMENT ASSEMBLY FOR COUPLED SYSTEMS

The interpolations and integrations, performed over element
number , are done in local or natural coordinates with Jaco-
bian relating the differential to so that
and . For a linearly
interpolated geometry, the spatially dependent and in an
element are interpolated from the nodal values and ac-
cording to

(36)

Since the virtual quantities have the same basis in the Galerkin
method, the same shape functions are used for the virtual
quantities

(37)

As shown above, and need not have the same element
type or interpolation matrix. The interpolation matrix has
three rows, since is a 3-D vector, and for an element having

nodes ( depends on the element order) it has
columns where , since each node has an associated
3-D vector containing the nodal value of . The vector
has entries which correspond to the three components of

at each node. Since the displacements need not have the
same shape functions, has columns which depends on
the number of nodes . The total degrees of freedom for an
element is therefore .

Typical choices for the shape functions are linear or quadratic
Lagrange shape functions employed over tetrahedral elements.
Eight-node brick elements may also be used but are more chal-
lenging to implement because of a lack of robust meshing algo-
rithms. If 4-node tetrahedral elements are used for both vector
potential and displacement, then . A tetrahe-
dral element using linear shape functions has four nodes (see
Fig. 13). The matrix shape function is comprised of the La-
grange shape functions

(38)

(39)

(40)

(41)



228 IEEE TRANSACTIONS ON MAGNETICS, VOL. 47, NO. 1, JANUARY 2011

Fig. 13. 4-node tetrahedral element.

Shape functions have the property that at node for
and for and are thus used to interpolate

both the geometry and the solution variables. For example, the
spatial coordinate is interpolated from the nodal values
in the following manner:

(42)

The vector has twelve entries, the first three are the three
components of at node 1, the second three are the compo-
nents at node 2 and likewise for the remaining two nodes. It
follows that the shape function matrix is

(43)

so that when or at node 1, ; the
vector potential is simply the value at node 1. Likewise when

or at node 2, ; the vector potential is
simply the value at node 2 and similarly for the other nodes.
Elsewhere in the tetrahedron, the shape functions simply result
in a linear interpolation of the nodal values. For example, if

which lies midway along the edge connecting
nodes 1 and 2, .

In the finite-element model, the nodal values of the vector po-
tential and displacement are the unknowns and the nodal values
of the virtual vector potential and displacement are arbitrary. To
include the finite-element discretization in the virtual work (8)
and (9), the flux density, magnetic field, strain, and stress need
to be calculated from the vector potential and displacement

(44)

(45)

The entries in the matrices and contain the derivatives of
the local coordinate system with respect to the global coordi-
nate system and can be thought of as the discrete form of the

curl and gradient operators. For linear elements they do not de-
pend on since the Jacobian is a constant matrix containing
the side lengths of the tetrahedral element, however for higher
order elements including the quadratic element they depend on
. Making the substitutions and performing the integrals over

elements for the magnetic domain and elements for the
mechanical domain results in the following summations for the
virtual work balance

(46)

(47)

The body force term has been dropped since the effects of
gravity and the electromagnetic Lorentz forces are usually
negligible in magnetostrictive devices [18]. The subscript
refers to the element number on the boundary; there are
for the magnetic domain and for the mechanical domain
which have an applied magnetic field and an applied traction,
respectively. The integral refers to the integral over
the element in natural coordinates and is the volume of the
element

(48)

and the integral gives the surface area of the ele-
ment face on the boundary

(49)
Point loads can be included in a very straightforward manner

if they are applied at element nodes. For point force applied
at node , the virtual work is , so for point loads,
the following should be added to the right-hand side of the me-
chanical virtual work balance

(50)

Incorporation of Constitutive Laws: Galfenol constitutive
behavior of magnetic field and stress versus flux density and
strain is nonlinear. This nonlinearity is the only such in the
finite-element model developed in this work. All other materials
considered have linear constitutive behavior, governed mechan-
ically by Hooke’s law and magnetically by a constant, isotropic
permeability. Geometric nonlinearities are not considered here.
It may be necessary to include geometric nonlinearities in order
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to model manufacturing processes involving plastic strains. In
this case, a plastic, nonlinear stress versus strain relationship
would be needed as well as the use of finite strains which are
nonlinearly related to displacement. The finite-element model
developed here is applicable to transducers which are operated
in the elastic region where the only source of nonlinearity in the
stress versus strain relationship is the magnetostriction. In the
Newton-Raphson method for solving nonlinear problems, the
problem is linearized and solved iteratively for the increments
from the initial condition. For small enough increments, the
constitutive law for Galfenol and magnetostrictive materials in
general is

(51)

(52)

The permeability matrix is the permeability at constant and
the stiffness matrix is the stiffness at constant . Magneti-
cally-induced stress and mechanically-induced magnetic field
arise from the magnetomechanical coupling matrix . For pas-
sive materials in the magnetic domain, (51) is used with .
For passive materials in the mechanical domain, (52) is used
with . The importance of partitioning the total domain
to be analyzed into magnetic and mechanical subdomains can
be understood from the constitutive law. Consider for example
the air volume which does not have an enclosure and is hence
free to move. The permeability is simply and the stiffness
is essentially zero compared to other media in the domain such
as copper, steel, and Galfenol. To illustrate, the Galfenol driver
does no work if it deflects while pushing against air. The situa-
tion would be different if the air were enclosed in an acoustic
chamber. In that case, air pressure would need to be consid-
ered and the air would be characterized by its bulk modulus.
Acoustic-structural interactions are not addressed in this work.
Integrating the virtual work for both magnetic and mechanical
quantities over the entire domain would give the same amount
of work as first partitioning and then integrating only over media
which have non-zero stiffness for the mechanical virtual work.
This is because media with zero stiffness introduce no mechan-
ical virtual work. While both approaches lead to the same virtual
work, performing the integration and element summation over
the entire domain will lead to a singular stiffness matrix in prac-
tice, resulting in a non-unique solution.

In the incremental solution, solution starts from an initial state
which is known and and are the vector potential and dis-
placement increments. Additionally, the input quantities trac-
tion , surface field and source current density are in-
crements. In incremental form, the linear constitutive laws can
be used to relate increments of magnetic field and stress to the
finite-element solution

(53)

(54)

These relations can now be substituted into the finite-element
approximation for the virtual work given by (46) and (47). This
yields matrix equations for increments of the vector potential

and displacement nodal values, since they can be pulled from
the integral. To illustrate, the following matrices are defined:

(55)

(56)

(57)

(58)

(59)

(60)

and the following vectors are defined:

(61)

(62)

(63)

Substitution of (53)–(54) and (44)–(45) into (46)–(47) and ap-
plying these definitions, the finite-element approximations for
the magnetic and mechanical virtual work balance are

(64)

(65)

The global assembly process takes into account element con-
nectivity and replaces the summations with matrix operations
(see [22, Ch. 3] or [23, Ch. 12] for details). After global as-
sembly, the finite-element model is

(66)

(67)

The vector contains the nodal values of the vector poten-
tial increments. In the meshing scheme and global assembly
process, a mapping is created from the nodal values of an el-
ement to an entry in . Most nodes are shared between el-
ements and therefore the total degrees of freedom due to vector
potential, or the length of the vector is less than the product
of the number of elements and the degrees of freedom of an
element, . Likewise, the length of the vector
of nodal displacement increments is . A typical

Zhi Qin


Zhi Qin


Zhi Qin


Zhi Qin




230 IEEE TRANSACTIONS ON MAGNETICS, VOL. 47, NO. 1, JANUARY 2011

model uses thousands of elements to represent the magnetostric-
tive element which has twelve degrees of freedom for linear,
tetrahedral elements. This illustrates the importance of using an
efficient constitutive model since it must be separately evaluated
for each degree of freedom of which there are tens of thousands.

The final incremental form of the finite-element model for
the vector potential and displacement increments results from
equating the coefficients of the virtual generalized displacement
in (66) and (67), which can be done because these are arbitrary

(68)

The essential or Dirichlet boundary conditions must be incorpo-
rated in order to obtain a unique solution to the finite-element
model (10). The essential boundary conditions are specified dis-
placement and vector potential.
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