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Abstract: The RF/photonics module in Comsol 
Multiphysics provides complete flexibility in 
specifying the dielectric function or refractive 
index as a function of electric field.  It is 
therefore a relatively simple matter to 
incorporate second-order (second harmonic 
generation) or third-order (four-wave mixing) 
nonlinear effects in a qualitative way.  However, 
to move towards practical device modeling, it is 
essential to include phase mismatch effects, 
which depend crucially on dispersion.  In this 
paper we show how to incorporate an auxiliary 
differential equation into a time-dependent EM 
wave propagation mode to model four-wave 
mixing in the presence of dispersion.  Special 
cases of this model are used to realize both 
Lorentz and Drude dispersion models. 
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1. Introduction 
 

Second- or third-order nonlinearity can be 
incorporated into RF/optical propagation models 
by specifying the polarization as an arbitrary 
function of the electric field in the subdomain 
settings.  The most general form of the 
constitutive relation (in the scalar approximation) 
is: 
 
 P(E)=Ps+ε0(χ1E+χ2E2+χ3E3+…) (1) 
 
where Ps is the spontaneous polarization (non-
zero for materials with a permanent dipole 
moment), ε0 is the permittivity of free space, and 
χ1, χ2, and χ3 are the first, second and third-order 
susceptibilities of the material, which are related 
to the refractive index, second harmonic 
generation and electro-optic coefficient, and 
four-wave mixing phenomena respectively.  In 
general, for a two- or three-dimensional model 
with arbitrary polarization, these quantities are 
tensors.  In this paper we deal with a single field 
component, so that all quantities can be treated 
as scalars. 

For a centro-symmetric material, χ2=0, and 
the constitutive relation can be written as: 

 
 D=ε0εrE+dE3 (2) 

 
where εr = n2 =1+χ1 is the relative permittivity, n 
being the refractive index, and d=ε0χ3 is 
proportional to the nonlinear refractive index, 
usually written as n2.  Expressed this way, the 
model constitutes a Kerr model for third-order 
nonlinearity.   

 
The Kerr model does not incorporate 

dispersion, which is crucial to studying phase 
matching in devices.  To include dispersion 
along with nonlinearity, one can use a Duffing 
model, which relates the polarization and electric 
field via a partial differential equation as1 

 
 (3) 
 
 

Here ω0 is the resonant absorption frequency, ωp 
is the plasma frequency, δ is a damping factor, 
and α defines the degree of nonlinearity.  (For 
non-centro-symmetric materials a linear term in 
P can be included to capture χ2 effects.)  The 
special case of α=0 is the Lorentz model for 
dispersion in dielectric materials, and the special 
case of α=ω0=0 is the Drude model for 
dispersion in conductive media.2  This equation 
can be included as an auxiliary differential 
equation in a Comsol Multiphysics model via a 
PDE mode.  The dependent variable, P, is then 
inserted into the constitutive relation of the EM 
propagation mode to couple the two portions of 
the model, which are solved simultaneously. 
 
2. Model Construction 
 

The second-harmonic generation model from 
the Comsol Multiphysics RF Module Model 
Library was used as a starting point for a proof-
of-concept model.  This model uses the 2D, in-
plane wave, TE-wave application mode in 
cylindrical coordinates (z,r,φ).  Note this is not a 

)()())(1(2 2
10

22
02

2
tEtPtP

t
P

t
P

pωχεαωδ =++
∂
∂

+
∂

∂

Excerpt from the Proceedings of the COMSOL Conference 2008 Boston



true axi-symmetric mode, which would constrain 
the tangential field components to be zero on the 
symmetry boundary.  The tangential component 
of the vector potential, Aφ, is treated as the 
dependent variable, and the corresponding 
electric field is calculated as Eφ=-∂Aφ/∂t. 

 
A PDE mode was added to this model, with 

the polarization, P, as the dependent variable and 
coefficients defined according to equation (3).  
The symbol P was then inserted into the sub-
domain properties in the EM mode to link the 
two parts of the model. 
 
2.1 Geometry, Meshing and Boundary 
Conditions  
 

The geometry consists of a single, 
rectangular sub-domain.  The mesh was defined 
using a sinusoidal mapping along the input 
boundary to produce a denser mesh where the 
field is strongest, exactly as in the second 
harmonic generation library model.  

 
The top boundary, representing the z-axis 

(r=0), is taken as a “perfect magnetic conductor” 
(Ht=0) for the EM mode.  The bottom boundary 
is taken as a perfect electric conductor (Et=0).  
The left (input) boundary uses a scattering 
boundary condition, with the input field defined 
as having a Gaussian shape both in space and 
time.  The right (output) boundary uses a 
scattering boundary condition with zero input 
field.  Note that a scattering boundary is 
perfectly transparent only for a plane wave, 
which does not apply in this model.  The 
Gaussian wave front used here does experience 
significant reflection. 

 
For the PDE mode, it is less clear which 

boundary conditions are appropriate.  For initial 
studies, we chose the following simple 
conditions, which produced reasonable results.  
On the lower boundary, a Dirichlet boundary 
condition, P=0, was used.  On the input 
boundary, a Neumann boundary condition was 
used to define P at its linear value: 

 
 P=ε0ωp

2χ1Eφ (4) 
 
On the upper (symmetry) and output boundaries, 
a null boundary condition was used; that is, a 

Neumann boundary condition was chosen, with 
all coefficients equal to zero. 
 
2.2 Sub-Domain Properties  
 

In the EM mode, the constitutive relation was 
chosen to be of the form D=ε0E+P, with P being 
determined by the PDE mode.  In the PDE mode, 
the coefficients were as defined in equation (3), 
with values for ω0, ωp, χ1 and δ chosen 
according to the specific case being studied, as 
described in Section 3 below. 
 
2.3 Solving and Post-processing  
 

Since the frequency spectrum of the output 
wave is the quantity of interest, a transient 
solution with fine time steps (10-16 s) was 
computed and Fourier transformed using Comsol 
Script. The solution as a function of time was 
recorded for several monitor points along the z-
axis. 
 
3. Results  
 

To verify that the model produces results that 
are consistent with known phenomenology, we 
ran several cases: 

 
1. Nonlinear, no dispersion (equation (2)) 
2. Linear, Lorentz dispersion (α=0; ω0=ωp) 
3. Linear, Drude dispersion (α=ω0=0) 
4. Four-wave mixing with dispersion (α>0; 

ω0=ωp) 
 
In each case the behavior of the model was in 
line with the known physics.   
 
3.1 Kerr Model  
 

As a baseline model for four-wave mixing 
without dispersion, the Comsol second harmonic 
generation model was modified slightly: 

 
1. the Eφ

2 term in the constitutive relation 
was replace by Eφ

3 and 
2. a second frequency component was added 

to the input wave 
 
The PDE mode was not included in this case.  
Because a short propagation distance was used to 
keep the computation tractable, it was necessary 



to use either an unrealistically high value for the 
nonlinear refractive index or an extremely high 
field amplitude to see significant frequency 
conversion.  With d~10-32-10-31 Cm/V3, which 
corresponds to a realistic value of n2~10-19-10-18 
m2/W, a field amplitude on the order of 109 V/m 
was necessary.   
 
Figure 1 shows input and output spectra; a 
degenerate four-wave mixing peak is clearly 
visible at f3=2f1-f2 in the output.3 

 
 
Figure 1. Input and output spectra showing four-wave 
mixing using Kerr model. 
 
3.2 Lorentz Dispersion  
 

To realize a Lorentz model for dispersion, it 
is only necessary to set α=0 and ω0=ωp in 
equation (3).  There are two ways to verify this 
model: launch a broad-band pulse and observe its 
spreading, or set ω0 equal to the frequency of the 
input wave and observe the strong absorption at 
this resonant frequency.  For the first method, the 
input wave must be near the resonant frequency 
where dispersion is greatest, so that significant 
spreading can be seen within a limited 
propagation distance.  A representative result for 
ω0=1.2 ωin is shown in Figure 2; from 
comparison of the time waveforms at the input 
(blue), middle (green) and output (red) monitor 
points, broadening of the pulse during 
propagation is evident. 

 
Figure 3 shows the transmission spectrum for 

the case in which the resonant frequency is equal 
to the frequency of the pump wave.  For this 
example the damping parameter, δ, was set equal 

to ω0/100, producing a rather sharp absorption 
peak. Clearly there is strong attenuation at 
f1= ω0/2π, while the probe wave at f2 is largely 
unaffected, as expected. 

 

 
Figure 2. Pulse spreading due to Lorentz dispersion 
with ω0=1.2 ωin 
 

 
 
Figure 3. Input and output spectra using Lorentz 
model. 
 
3.3 Drude Dispersion  
 

To implement Drude dispersion, we set ω0=0 
and χ1=1 in equation (3).  The expected behavior 
in this case is that waves at a frequency 
substantially greater than the plasma frequency, 
fp=ωp/2π, will propagate freely, while lower-
frequency waves will be reflected or absorbed. 
 

A simple way to verify the proper function of 
the Drude model is to propagate the same two 
frequency components as in the previous 
examples, with several different values of the 



plasma frequency.  Figure 4 shows the 
transmission spectrum for four cases: fp<<f2<f1, 
fp<f2<f1, f2<fp<f1 and fp>f1>f2.  Clearly as fp 
increases, the attenuation increases, first for the 
lower frequency component then for the higher 
one; when fp>f1 there is negligible transmission.   

 

 
Figure 4. Input (blue) and output (green) spectra 
using Drude model with several values of the plasma 
frequency. 
 
3.4 Duffing Model  
 

For the general case of dispersion with 
nonlinearity, we choose  ωp=ω0 to be in the near-
UV region (2πc/ω0 = 0.3-0.4 μm) and χ1=1 (n 
=√2), corresponding to a typical glass.   

 
To choose a suitable value for α, it can be 

related to the more familiar nonlinear refractive 
index of the Kerr model (n2) as1 
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where η0 = (μ0/ε0)1/2 is the impedance of free 
space.   
 

Figure 5 shows the output spectrum for this 
case on a logarithmic scale, revealing that in 
addition to the four-wave mixing peaks at 2f1-f2 
and 2f2-f1, there are third-harmonic-generation 
peaks and higher-order processes.  

 
The affect of dispersion on phase matching 

can be seen by plotting the power in the four-
wave mixing peak at 2f2-f1 vs. propagation 
distance.  Figure 6 shows the FWM power 
relative to the probe (f2) power vs. propagation 

distance for three values of ω0.  As the resonant 
frequency decreases, thereby increasing the 
dispersion in the frequency range around f1 and 
f2, the transfer length and maximum transferred 
power decrease.  This result shows that 
dispersion is exerting a critical influence on the 
phase mismatch.   

 

 
Figure 5. Output spectrum for Duffing model with 
input frequencies at f1 and f2. 
 

 
Figure 6. Power in FWM peak relative to probe wave 
vs. propagation distance for several values of the 
resonant frequency. 
 
4. Extensions of the Model 
 

 The model described here can be extended 
in several ways to handle other cases.  First, χ2 
effects such as second-harmonic generation can 
be incorporated by including an additional term 
in equation (3) so that the restoring force 
becomes ω0

2[1+βP(t)+αP(t)2]P(t).  The value of 
β in terms of the usual nonlinear optical 
coefficient, d11, is: 

 
 β=-d11/(ε0χ1)2 (7) 



 
To incorporate both Drude (electron) and 

Lorentz (lattice) contributions to the dispersion, 
with the latter potentially having multiple 
resonances, a separate PDE mode can be added 
for each contribution, Pi, to the polarization 
density.  In the EM mode, the total polarization 
density would then be specified as P=PD+ΣPL,i, 
where PD is the Drude contribution and PL,i is the 
ith Lorentz term. 

 
Extension of the model to three dimensions 

can be accomplished by specifying the 
polarization as a vector (p1 p2 p3) upon creation 
of the PDE mode.  All coefficients can then be 
entered as tensors.  However relating the 
coefficients of equation (3) to the dielectric and 
nonlinear optical tensors for anisotropic 
materials requires further analysis that is beyond 
the scope of this paper. 

 
5. Conclusions 
 

 We have demonstrated a unified model for 
dispersion and nonlinearity that can be 
incorporated into any Comsol Multiphysics 
electromagnetic propagation model via a PDE 
mode.  By appropriate choice of parameters, the 
model has been verified to produce the correct 
phenomenology for Lorentz and Drude 
dispersion, as well as four-wave mixing in the 
presence of dispersion.   
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