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NATURAL CONVECTION IN A RECTANGULAR
ENCLOSURE WITH SINUSOIDAL TEMPERATURE
DISTRIBUTIONS ON BOTH SIDE WALLS

Qi-Hong Deng and Juan-Juan Chang
School of Energy Science and Engineering, Central South University,
Changsha, Hunan, People’s Republic of China

A two-dimensional steady and laminar natural convection in an air-filled (Pr ¼ 0.7)

rectangular enclosure is investigated numerically. The horizontal walls are thermally

insulated and the vertical side walls have two spatially varying sinusoidal temperature

distributions of different amplitudes and phases. The governing equations in primitive vari-

ables are discretized by the finite-volume method and solved by the SIMPLE algorithm.

The fluid flow and heat transfer characteristics are systematically investigated over a wide

range of Rayleigh number (Ra ¼ 103–106), amplitude ratio (e ¼ 0� 1), phase deviation

(/ ¼ 0� p), and aspect ratio (Ar ¼ 0.25–4). The results show that the natural-convection

heat transfer in enclosures with two sinusoidal temperature distributions on the side walls is

superior to that with a single sinusoidal temperature profile on one side wall.

INTRODUCTION

Natural convection in enclosures has received considerable attention in the past
few decades, as comprehensively reviewed by Ostrach [1], and will continue to be an
attractive and fundamental research field. One reason is its various engineering
applications, such as solar energy systems, indoor thermal environments, nuclear
reactor systems, cooling of electronic equipment, and various chemical and=or
industrial processes. The other reason is the growing scientific research interest in heat
transfer enhancement of natural convection in enclosures. For no operating cost or
noise, natural convection usually provides a simple but effective approach to remove
heat from enclosures, but the comparatively low heat transfer rate and large
space requirement become the main limitations for its practical applications. How
to increase heat transfer in enclosures so as to design smart but compact natural
convection has become a main concern of recent years. Much focus has also been
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directed to the fundamental fluid flow and heat transfer characteristics under differ-
ent boundary conditions.

In addition to conventional natural convection in enclosures with uniform
thermal boundaries, recent attention has been intensively focused on the cases with
nonuniform temperature distribution on the walls. The numerical studies on this
topic are basically categorized into three classes. The first class is that one wall is
divided into two zones of different temperatures. Poulikakos [2] studied a two-
dimensional (2-D) enclosure with one vertical side wall differentially heated; one half
of the wall is heated and the other half is cooled, and the remaining walls are insu-
lated. Jahnke et al. [3] then investigated a 2-D enclosure with vertical side walls both
differentially heated, the upper halves cooled and the lower halves heated. Fu et al.
[4] considered a more complicated enclosure, with the heated wall of the enclosure
divided into higher- and lower-temperature regions and the temperature of the cold
wall maintained at a constant. The second nonuniform class is that the temperature
along one wall is changed linearly. Oosthuizen [5] considered an enclosure with heat-
ing from the bottom surface and cooling from the top surface, and the side walls
were maintained at a linearly varying temperature. Kumar and Singh [6] examined
a porous rectangular enclosure with a linear temperature distribution on one side
wall. Kumar and Shalini [7] later investigated a porous enclosure with one wavy side
wall having a linear temperature profile. Recently, Sathiyamoorthy et al. [8, 9] stud-
ied a more complicated square cavity, filled with either fluid or a porous medium,
with the temperature along both side walls varied linearly. The third class of natural
convection in enclosures with nonuniform thermal boundaries is that the wall tem-
perature is varied sinusoidally according to the space coordinate. Bilgen and Yedder
[10] considered a 2-D rectangular enclosure with a sinusoidal temperature profile
imposed on one vertical side wall and the other walls insulated. A similar work
conducted by Sarris et al. [11] used a 2-D rectangular enclosure with the top wall
heated with a sinusoidal temperature profile and all the other walls insulated.
A porous rectangular enclosure with sinusoidal temperature distribution on the

NOMENCLATURE

A amplitude of the sinusoidal

temperature function

Ar aspect ratio

g gravity acceleration

H height of the enclosure

L length of the enclosure

n normal direction of the surface

Nu, Nu local and average Nusselt numbers

p;P dimensional and dimensionless

pressures

Pr Prandtl number

Ra Rayleigh number

t;T dimensional and dimensionless

temperature

Dt temperature scale

t0 reference temperature

u; v dimensional velocity components in

x and y directions

U ;V dimensionless velocity components in

X and Y directions

x; y dimensional coordinates

X ;Y dimensionless coordinates

a thermal diffusivity

b expansion coefficient

e amplitude ratio

n kinematic viscosity

q density

/ phase deviation

w stream function

Subscripts

l left wall

r right wall
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bottom wall and adiabatic condition on the other walls was analyzed by Varol et al.
[12]. Saeid and Yaacob [13] studied a square cavity with one side wall heated by a
sinusoidal temperature profile, the other side wall cooled at a constant temperature,
and the horizontal walls insulated. The corresponding case in a porous square cavity
was studied by Saeid and Mohamad [14]. Basak et al. [15] considered a square cavity
with the bottom wall heated sinusoidally, the vertical side walls both cooled at
constant temperatures, and the top wall insulated. Dalal and Das [16] examined a
rectangular cavity sinusoidally heated from below and uniformly cooled from the
other walls. Recently, Dalal and Das [17, 18] considered an enclosure heated from
the top surface with a sinusoidally varying temperature and cooled from the other
three surfaces including one wavy vertical side wall.

Review of the above literatures found that the nonuniform thermal boundary
has a significant effect on the natural convection in enclosures, resulting multicellular
flow structures and more complicated heat transfer characteristics. Although the
above studies varied from case to case, fundamental understanding of fluid flow
and heat transfer characteristics of natural convection in enclosures with non-
uniform thermal boundaries is still lacking, and more investigations are required.
The present work aims to investigate a more complicated natural convection in an
enclosure with two sinusoidal temperature profiles on the side walls. As expected,
the interaction between the two sinusoidally varying temperatures creates new fluid
flow and heat transfer characteristics. The results obtained indicate that the physical
model offers a framework to increase heat transfer for natural convection in enclosures.

PHYSICAL MODEL

Figure 1 shows the physical model of the present study schematically. There is
natural convection in an air-filled 2-D rectangular enclosure with length L and
height H. The Cartesian coordinate system has its origin at the lower left corner
of the enclosure, and the orientations of the x and y axes are along the length and
height of the enclosure, respectively. The gravitational acceleration acts in the reverse
direction of the y coordinate. The horizontal top and bottom walls are thermally

Figure 1. Schematic model of natural convection in a 2-D rectangular enclosure with sinusoidal tempera-

ture distributions on side walls (figure is provided in color online).
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insulated, but the left and right vertical side walls have imposed two sinusoidally
varying temperature distributions according to the space coordinate as follows:

tðyÞ ¼ t0 þ Al sin
2py

H

� �
at x ¼ 0

tðyÞ ¼ t0 þ Ar sin
2py

H
þ /

� �
at x ¼ L

ð1Þ

where the reference=mean temperatures of the sinusoidal temperature profiles on
the left and right side walls are the same as t0, but the amplitude and phase of the
sinusoidal profiles are, respectively, Al and 0, and Ar and /.

MATHEMATICAL MODEL

The natural convection is considered to be incompressible, steady, and lami-
nar, and the Boussinesq approximation is employed to account for the thermal
buoyancy effects. The governing equations in dimensionless form are as follows.
Continuity:

qU

qX
þ qV

qY
¼ 0 ð2Þ

Momentum:

U
qU

qX
þ V

qU

qY
¼ � qP

qX
þ Pr

q2U

qX 2
þ q2U

qY 2

 !
ð3Þ

U
qV

qX
þ V

qV

qY
¼ � qP

qY
þ Pr

q2V

qX 2
þ q2V

qY 2

 !
þRa Pr T ð4Þ

Energy:

U
qT

qX
þ V

qT

qY
¼ q2T

qX 2
þ q2T

qY 2
ð5Þ

The dimensionless variables in the above equations are defined as

ðX ;Y Þ ¼ ðx; yÞ
H

ðU ;VÞ ¼ ðu; vÞ
a=H

P ¼ p

qða=HÞ2
T ¼ ðt� t0Þ

Dt
ð6Þ

using H, a=H, and Dt ¼ Al (amplitude of the sinusoidal profile) as the characteristic
scales for length, velocity, and temperature, respectively. The nondimensional
parameters, Rayleigh number and Prandtl number, are defined as

Ra ¼ gb Dt H3

na
and Pr ¼ n

a
ð7Þ
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For the boundary conditions for the above governing equations, the no-slip
condition is imposed for all velocities on the walls, and the thermal boundary
conditions are

T ¼ sinð2pY Þ at X ¼ 0

T ¼ e sinð2pY þ /Þ at X ¼ 1

Ar
qT

qn
¼ 0 at Y ¼ 0 and Y ¼ 1

ð8Þ

where e ¼ Ar=Al is the amplitude ratio of the sinusoidal temperature on the right side
wall to that on the left side wall, and Ar ¼ H=L is the aspect ratio of the rectangular
enclosure.

The fluid flow structure inside the enclosure is visualized by streamlines, and
thus the stream functions (w) are defined as

qw
qY
¼ U � qw

qX
¼ V ð9Þ

Heat transfer across the enclosure is described by the Nusselt number. The
local Nusselt number along the left and right side walls is defined as

Nul ¼ � qT

qn

� �
X¼0

and Nur ¼ � qT

qn

� �
X¼1=Ar

: ð10Þ

In the heating half of the side wall, the fluid in the enclosure will gain heat from the
side wall and thus Nu > 0, but the fluid will lose heat in the cooling half of the side
wall and hence Nu < 0. The total heat transfer rate across the enclosure is the sum of
the averaged Nusselt numbers along the heating halves of both vertical side walls, as
described by the following average Nusselt number:

Nu ¼
Z

heating half

Nul dY þ
Z

heating half

Nur dY ð11Þ

NUMERICAL PROCEDURE

The governing equations, Eqs. (2)–(5), are discretized by the finite-volume
method (FVM) on a nonuniform grid system [19]. The third-order QUICK scheme
and the second-order central difference scheme are implemented for the convection
and diffusion terms, respectively. The set of discretized equations for each variable
is solved by a line-by-line procedure, combining the tridiagonal matrix algo-
rithm (TDMA) with the successive overrelaxation (SOR) iteration method. The
coupling between velocity and pressure is solved by the SIMPLE algorithm [19].
The convergence criterion is that the maximal residual of all the governing equations
is less than 10�6.

In order to validate the numerical methods and codes of the present work,
a recent, similar work by Bilgen and Yedder [10] was selected as the benchmark
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solution for comparison. Bilgen and Yedder considered the natural convection in an
air-filled (Pr ¼ 0.7) 2-D rectangular enclosure with three adiabatic walls and one side
wall whose lower half is cooled but upper half is heated by a sinusoidal temperature
profile. Figure 2 presents comparisons between the present results and those of
Bilgen and Yedder for the normalized average Nusselt number of the enclosure
within a wide Rayleigh number range (Ra ¼ 103–106). It was observed that good
agreement is achieved for various aspect ratios (Ar ¼ 0.5, 1, 2).

RESULTS AND DISCUSSION

As indicated by above mathematic model, the natural convection under con-
sideration is governed by five nondimensional parameters, two model parameters
(Pr and Ra) from the governing equations and three boundary parameters (e, /,
and Ar) from the boundary conditions. In the present study, the Prandtl number
is kept constant at Pr ¼ 0.7, and therefore main attention is paid to the effects of
the remaining four parameters on the fluid flow and heat transfer characteristics
in the enclosure. The effect of Rayleigh number (Ra) is first investigated at fixed
boundary conditions, and then the effect of the boundary conditions, such as the
amplitude ratio (e), the phase deviation (/), and the aspect ratio (Ar), are analyzed
at various Rayleigh numbers.

Effect of Rayleigh Number (Ra)

In order to consider the effect of the Rayleigh number (Ra) only, the
other boundary parameters are all kept constant at e ¼ 1, / ¼ 0, Ar ¼ 1, i.e., the
natural convection in a square enclosure with the same temperature profiles on

Figure 2. Comparisons of the normalized average Nusselt number at various aspect ratios between the

present work and that of Bilgen and Yedder [10] (figure is provided in color online).
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Figure 3. Effect of Rayleigh number on the streamlines (left) and isotherms (right) (e ¼ 1, / ¼ 0, Ar ¼ 1)

(figure is provided in color online).
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the vertical side walls. Figure 3 shows the streamlines and isotherms at various Ray-
leigh numbers. At low Rayleigh number, Ra ¼ 103, the flow in the enclosure is of
2� 2 cellular structure with approximately vertical and horizontal symmetries about
the middle of the enclosure and symmetry about its diagonals. The convection is very
weak and hence the heat transfer is dominated by the conduction mechanism, as
shown by the isotherms. As the Rayleigh number increases up to Ra ¼ 104, a
three-cellular flow structure is formed in the enclosure with one large diagonal cell
and two smaller corner cells. Obviously, at this point the convection prevails, and
thus the flow structure loses the vertical and horizontal symmetries but the diagonal
symmetry remains so as to increase heat transfer. As the Rayleigh number continues
to increase, the convection is strengthened, as seen by the fact that the inner kernel of
the large diagonal cell breaks into two kernels, and also the corner cells expand.
Accordingly, the heat transfer is enhanced as seen by the fact that the thermal
boundary layers along the heating and cooling zones of the side walls shrink.

Figure 4 illustrates the variations of the local Nusselt number along the left
side wall at various Rayleigh numbers. Because of the diagonally symmetric flow
structure, the local Nusselt number along the right side wall is reverse and thus
omitted. The Nu–Y curves are approximately of sinusoidal shape like the thermal
boundary, which indicates that the local heat transfer is directly affected by the
temperature distribution on the surface, i.e., larger heat transfer occurs where
the temperature is higher. On the lower, heating half of the left side wall
(0 � Y � 0:5), the fluid mainly gains heat and thus almost Nu > 0, and, in contrast,
Nu < 0 is observed on the upper, cooling half of the left side wall (0:5 � Y � 1), but
reverse heat transfer occurs near the edges of the heating and cooling zones due to
the nonuniform temperature distribution. On the other hand, heat transfer in the

Figure 4. Effect of Rayleigh number on the local Nusselt number of the left wall (e ¼ 1, / ¼ 0, Ar ¼ 1)

(figure is provided in color online).
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enclosure is increased as the Rayleigh number increases, as seen as the amplitude of
the Nu–Y curve increases significantly. It is worth noting that the local Nusselt num-
ber distributions are not symmetric along the horizontal centerline (Y ¼ 0:5) like the
boundary temperature distributions. The maximal local Nusselt number on the
lower heating half is larger than the minimal value on the upper half, i.e., more heat
is transferred from the lower heating half than from the upper half of the left side
wall. This is consistent with the flow structure, as a larger cell is formed along the
lower heating half than along the upper cooling half.

Effect of Amplitude Ratio (e)

Now consider the amplitude effect of the sinusoidal temperature profile along
the right side wall on the heat transfer across the enclosure at various Rayleigh num-
bers. The other parameters are kept constant at Ar ¼ 1 and / ¼ 0. The temperature
amplitude ratio (e) of the right side wall to the left side wall is varied from 0 to 1, and
the adiabatic condition on the right side wall is also considered here for comparison.
Figure 5 presents the variations of the average Nusselt number (Nu) of the enclosure
in terms of Rayleigh number (Ra) at various amplitude ratios (e). Obviously, the
average Nusselt number is increased as Rayleigh number increases for each ampli-
tude ratio case. On the other hand, the average Nusselt number is also increased
as the amplitude ratio increases from 0 to 1 at various Rayleigh numbers, but the
increasing tendency is augmented as Rayleigh number increases. The figure shows
that the heat transfer is increased as the amplitude ratio (e) increases, and that the
heat transfer for cases e > 0 is higher than the case e ¼ 0, which is equivalent to

Figure 5. Effect of the amplitude ratio (e) on the average Nusselt numbers (/ ¼ 0 and Ar ¼ 1) (figure is

provided in color online).
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Figure 6. Effect of the amplitude ratio (e) on the local Nusselt numbers of the left (left) and right (right)

side walls (/ ¼ 0 and Ar ¼ 1) (figure is provided in color online).
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the adiabatic case. This means that the nonuniform or sinusoidal temperature
distribution on the side wall is beneficial for improving heat transfer, as compared
to the case where the wall is kept at uniform or constant temperature (e ¼ 0) and also
the case where the wall is insulated.

In order to better understand and assess the above effect of the amplitude ratio
on the total heat transfer, Figure 6 presents the detailed distributions of the local
Nusselt number along the Y coordinate for both the left and right side walls at vari-
ous Rayleigh numbers. First, it is observed that the heat transfer on both side walls is
significantly increased as Ra increases from 103 to 106. Second, it is interesting to
find that the heat transfer of the left side wall is nearly not affected by the variation
of temperature amplitude of the right side wall. The curves Nu–Y for the left side
wall at each Rayleigh number are nearly the same as the amplitude ratio (e) changes.
Third, the heat transfer of the right side wall is obviously increased as its temperature
amplitude ratio varies from 0 to 1, and the increasing tendency becomes serious as
Ra increases. This implies that the variation of temperature amplitude of the right
wall can only change the heat transfer on its own surface; it cannot affect the heat
transfer on the other side wall.

The inherent reason for the effect of temperature amplitude can be explored by
examning the microscopic flow patterns and temperature distributions within the
enclosure. Figure 7 depicts the changes of the streamlines and isotherms in terms
of the amplitude ratio of the temperature on the right wall (e) for Ra ¼ 105. When
the right side wall is kept at constant temperature (e ¼ 0), the streamlines show that
two symmetric cells are formed in the upper and lower halves of the enclosure, and
the isotherms show that the temperature variations are mainly within a thin region
near the left side wall, with the remaining region near the right side wall of uniform
or mean temperature. Therefore, heat transfer occurs only at the left side wall and
not at the right side wall. As the amplitude ratio increases up to the level
e ¼ 0:25, a four-cellular flow structure forms in the enclosure, with two main circula-
tions near the left side wall and two secondary circulations near the right side wall.
Accordingly, the isotherms along the left side wall are nearly the same as before, and

Figure 7. Effect of the amplitude ratio (e) on the streamlines (top) and isotherms (bottom) (/ ¼ 0, Ar ¼ 1,

Ra ¼ 105) (figure is provided in color online).
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Figure 8. Streamlines (left) and isotherms (right) for cases that e ¼ 0 and adiabatic right side wall (/ ¼ 0

and Ar ¼ 1) (figure is provided in color online).
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hence the heat transfer across the surface is kept fixed. But the temperature along the
right side wall is not uniform any more, as observed where a small number of iso-
therms appear near the surface, which results in a weak heat transfer. As e increases
further, the flow structure changes to three cells, as seen where the bottom secondary
cell expands, the upper main cell shrinks, and the top secondary cell is combined
with the lower main cell. At e ¼ 1, the three-cellular flow structure is of diagonal
symmetry, with one large diagonal cell and two small corner cells. Simultaneously,
more and more isotherms appear along the right side wall and thus heat transfer
across the right side wall increases. However, during the course of increasing e,
the flow along the left side wall is nearly invariant, as seen by streamlines where
the upper half of the surface is always flushed by a downward cold cell and the lower
half of the surface is flushed by a upward hot cell. Influenced by the flow structure,
the temperature distributions indicated by isotherms along the left side wall are
invariant, and thus heat transfer is kept invariant.

In order to illustrate the low heat transfer for the case where the right side wall
is kept at a uniform temperature (e ¼ 0) or at adiabatic condition, Figure 8 shows
the streamlines and isotherms at various Rayleigh numbers. The streamlines indicate
that the flow structure is always of two symmetric cells. Isotherms show that the
fluid temperature changes only along the active left side wall and always remains
at constant or uniform (mean) temperature along the right side wall. This means
the right side wall is always inert. However, in the case where two sinusoidally vary-
ing temperature distributions are imposed on the side walls, both side walls are active
and hence the heat transfer is enhanced.

Figure 9. Effect of the phase deviation (/) on the average Nusselt number (e ¼ 1 and Ar ¼ 1) (figure is

provided in color online).
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Effect of Phase Deviation (/)

Figure 9 shows the variations of the average Nusselt number across the
enclosure in terms of Rayleigh number at various phase deviations (/ ¼ 0; p=4;
p=2; 3p=4; p) of the temperature profiles between the left and right side walls, and

Figure 10. Effect of the phase deviation (/) on the local Nusselt numbers of the left (left) and right (right)

side walls (e ¼ 1 and Ar ¼ 1) (figure is provided in color online).
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the other parameters are kept constant at e ¼ 1 and Ar ¼ 1. It is found that the
average Nusselt number (Nu) is always increased as the Rayleigh number (Ra)
increases for each phase deviation (/). Although no consistent tendency is observed
for the effect of phase deviation, it is obvious that the average Nusselt number is
basically the lowest for the case / ¼ 0. As the phase deviation increases up to
/ ¼ p=4, the average Nusselt number is enhanced within a wide range of the
Rayleigh numbers (Ra � 105) but slightly lowered at Ra ¼ 106. As the phase
deviation increases further, such as to / ¼ p=2, the heat transfer is enhanced
within the whole range of the Rayleigh numbers, and reaches the highest as the phase
deviation is increased up to / ¼ 3p=4. Then, the average Nusselt number begins to
decrease as the phase deviation increases further, such as to / ¼ p.

Figure 10 shows the effect of the phase deviation on the local Nusselt number
along the Y coordinates of the left and right side walls. It is found that the heat trans-
fer of the left side wall is not so much influenced as the right side wall by the phase
change of the temperature profile on the right side wall, as seen that the local Nusselt
number distribution on the left side wall is slightly affected by the phase change.
However, the local Nusselt number distribution on the right side wall is significant
by affected by the phase change, as seen that the heating zone moves upward and
the cooling zone moves downward as the phase deviation (/) changes from 0 to p.

Figure 11 illustrates the variations of the streamlines and isotherms as the
phase deviation changes from / ¼ 0 to / ¼ p at Ra ¼ 105. At / ¼ 0, the flow is
of three-cellular structure with one large diagonal cell and two smaller corner cells
of identical sizes. As the phase deviation increases, the size of the upper corner cell
is enlarged but the size of the lower corner cell is decreased. At / ¼ p, the lower cor-
ner cell disappears, and the flow structure is of two identical cells in the halves of the
enclosure. During the variation course of the phase deviation, the isotherms along
the left side wall are nearly retained, but the isotherm distributions along the right
side wall are changed. Therefore, the heat transfer on the left side wall is kept fixed,
but that on the right side wall is varied.

Figure 11. Effect of the phase deviation (/) on the streamlines (top) and isotherms (bottom) (e ¼ 1,

Ar ¼ 1, and Ra ¼ 105) (figure is provided in color online).
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Effect of Aspect Ratio (Ar)

In order to investigate the effect of the aspect ratio on the heat transfer across
the enclosure with two sinusoidal temperature profiles of the same amplitude (e ¼ 1)
on the vertical sidewalls, Figure 12 plots the variations of the average Nusselt num-
ber in terms of Rayleigh number at various aspect ratios (Ar ¼ 0:25; 0:5; 1; 2; 4) for
two cases, one of the same phase (/ ¼ 0) and the other of the reversed phase (/ ¼ p).
When the two sinusoidal temperatures are of the same phase (/ ¼ 0), as seen in
Figure 12a, the average Nusselt number of the enclosure is first kept invariant as
the aspect ratio (Ar) is less than unity. However, if the aspect ratio is larger than
unity, the average Nusselt number is decreased as the aspect ratio is increasing. This
means that it is not beneficial to heat transfer to have a narrow enclosure with two
sinusoidal temperatures of the same phase. When the two sinusoidal temperatures
are of the reversed phase (/ ¼ p), as presented in Figure 12b, the average Nusselt
number of the enclosure is always increased as the aspect ratio is increasing, which
means that heat transfer can be improved by marrowing the enclosure.

CONCLUSIONS

The present work studied numerically a 2-D steady and laminar natural convec-
tion in an air-filled rectangular enclosure with two spatially varying sinusoidal
temperature distributions on the vertical left and right side walls. Main attention
has been focused on the effect of the main factors, including the Rayleigh number
(Ra), the amplitude ratio (e), and the phase deviation (/) of the sinusoidal temperature
distribution between the right and left side walls, and the aspect ratio (Ar) of the enclos-
ure, on the fluid flow and heat transfer characteristics. Main conclusions are as follows.

1. The heat transfer is increased as the amplitude ratio (e) increases from 0 to 1.
This means that the nonuniformly sinusoidal temperature distribution on the

Figure 12. Effect of the aspect ratio on the average Nusselt numbers (figure is provided in color online).
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side wall is beneficial for improving heat transfer as compared to the case where
the wall is kept at uniform temperature (e ¼ 0).

2. The heat transfer is the worst if the temperature profiles on both side walls are of
same phase (/ ¼ 0), and reaches the highest when the phase deviation / ¼ 3p=4.

3. The variation of the amplitude or phase of the sinusoidal temperature distri-
bution on one side wall mainly affects the heat transfer on its own surface; it
has little effect on the other side wall.

4. The average Nusselt number of the enclosure is decreased with the aspect ratio
when the two sinusoidal temperatures are of the same phase (/ ¼ 0), but is
increased if the sinusoidal temperatures are of reversed phase (/ ¼ p).
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