The equation to implement is:

$$
\Delta T(r, z=0, t)=\frac{a q}{2 k} \int_{0}^{+\infty} J_{0}(\lambda r) \times J_{1}(\lambda a) \times \operatorname{erf}\left[\lambda(\alpha t)^{\frac{1}{2}}\right] \frac{d \lambda}{\lambda}
$$

J_{0} and J_{1} are Bessel functions of the first kind of order 0 and 1 . $e r f$ is the error function.
r the radius can be defined in COMSOL as sqrt $\left(x^{\wedge} 2+y^{\wedge} 2\right)$ and t is the time.
a, q, k and α are constants.
λ is an integration parameter. It does not depend on the geometry or the time.

