$$
\left.\begin{array}{l}
n_{t}+\boldsymbol{u} \cdot \nabla n+\chi \nabla \cdot[n r(c) \nabla c]=D_{n} \Delta n, \\
c_{t}+\boldsymbol{u} \cdot \nabla c=D_{c} \Delta c-n \kappa r(c), \\
\rho\left(\boldsymbol{u}_{t}+\boldsymbol{u} \cdot \nabla \boldsymbol{u}\right)+\nabla p=\eta \Delta \boldsymbol{u}-n \nabla \Phi, \\
\nabla \cdot \boldsymbol{u}=0,
\end{array}\right\}
$$

Physical geometry: 2D rectangle
Boundary conditions:
Periodic boundary conditions at the left and right walls
Top wall:

$$
\chi n r(c) c_{y}-D_{n} n_{y}=0, \quad c=c_{a i r}, \quad v=0, \quad u_{y}=0
$$

bottom wall:

$$
n_{y}=c_{y}=0, \quad u=v=0
$$

