Fluid Valve

Introduction

Many different applications such as printers involve the periodic opening and closing of fluid-flow channels. This is generally a difficult problem to model as it implies a moving boundary condition for the part of the geometry that acts as an obstacle for the flow.

An alternative is to use a material property (viscosity), which is easy to vary over time. In this case, specify a very large viscosity (ideally it should be an infinite viscosity) that in effect stops the flow in regions where this large viscosity is present. To simulate the movement of this region of large viscosity, the model includes a logical expression in the subdomain settings.

The model describes a valve where it is possible to direct the flow into one of the two channels. Flow of varying degrees can also occur in both channels during the opening and closing stages.

Model Definition

Figure 1 shows the model domain.

Figure 1: Depiction of the geometry and the operation of the fluid valve. Flow enters from one inlet at the left, but can leave the valve through two outlets at the right. The choice of outlet depends upon the position of the valve pin. In this model, two valve pins oscillate between the following positions: in front of one outlet channel to in front of the other. Sometimes flow is possible through both outlets, depending on the position of the pins.

In this model, the valve pin moves according to a sinusoidal function of time. The inlet velocity is constant.

DOMAIN EQUATIONS

The fluid flow is described by the Navier-Stokes equations:

$$
\begin{gather*}
\rho \frac{\partial \mathbf{u}}{\partial t}-\nabla \cdot \eta\left(\nabla \mathbf{u}+(\nabla \mathbf{u})^{T}\right)+\rho \mathbf{u} \cdot \nabla \mathbf{u}+\nabla p=0 \tag{1}\\
\nabla \cdot \mathbf{u}=0
\end{gather*}
$$

where ρ denotes the density $\left(\mathrm{kg} / \mathrm{m}^{3}\right), \mathbf{u}$ the velocity vector (m / s), η the viscosity (Ns/ m^{2}), and p the pressure (Pa). The modeled fluid is air with viscosity $10^{-5} \mathrm{Ns} / \mathrm{m}^{2}$ and density $1 \mathrm{~kg} / \mathrm{m}^{3}$.

The movement of the valve is described with an analytic expression pin, which returns the value of one in the area corresponding to the valve pin and zero elsewhere. The viscosity is then expressed by

$$
\begin{equation*}
\eta=\eta_{0}+\operatorname{pin} \cdot \eta_{\infty} \tag{2}
\end{equation*}
$$

where η_{0} is the fluid viscosity, η_{∞} is a very large viscosity (ideally infinite), and pin is described by

$$
\begin{equation*}
\operatorname{pin}=x_{\mathrm{pin}} y_{\mathrm{pin}} \tag{3}
\end{equation*}
$$

where

$$
\begin{gather*}
x_{\text {pin }}=\left(x>x_{0}\right)\left(x<x_{1}\right) \tag{4}\\
y_{\text {pin }}=1-\left(y>y_{1}\right)+\left(y>y_{2}\right) \tag{5}
\end{gather*}
$$

y_{1} and y_{2} depend on time, t, according to:

$$
\begin{gather*}
y_{1}=-y_{0}+y_{\text {max }} \sin (2 \pi t) \\
y_{2}=y_{0}+y_{\text {max }} \sin (2 \pi t) \tag{6}
\end{gather*}
$$

and where y_{0}, x_{0}, x_{1}, and $y_{\text {max }}$ are fixed in time and describe the size of the valve pin and the amplitude with which the pin moves.

BOUNDARY CONDITIONS

At the inlet, the model uses a fully developed laminar flow. The velocity is set to a parabolic velocity profile with maximum velocity $v_{\max }$ equal to $0.25 \mathrm{~m} / \mathrm{s}$. At the outlets, a neutral boundary condition states that the normal component of the stress tensor is zero:

$$
\begin{equation*}
\mathbf{n} \cdot\left[-p I+\eta\left(\nabla \mathbf{u}+(\nabla \mathbf{u})^{T}\right)\right]=0 \tag{7}
\end{equation*}
$$

All other boundaries have a no-slip condition

$$
\begin{equation*}
\mathbf{u}=0 \tag{8}
\end{equation*}
$$

Results

Figure 2 shows the velocity field (modulus of the velocity vector) when the valve is completely open. Firstly, the plot shows that the inlet is smaller than the compartment that it enters, so that some distance is required before the flow reaches another parabolic profile for the main body of the inlet chamber. If you investigate the velocity, some recirculation occurring at the corners of the chamber beside the inlet is visible.

Secondly, the structure of the outlet channels leads to a slight thinning toward the middle of the channels. This provides a slight acceleration, and subsequently greater velocity magnitude, in these regions.

Time $=1.5$ Surface: Velocity magnitude (m / s)

Figure 2: Velocity field when the valve is completely open.
Figure 3 shows the velocity field when the valve is halfway closed from above and fully closed from below. The use of a very large viscosity not only simulates the solidity of
the valve pin but also does a good job of providing a no-slip boundary condition at the edge of the valve pin.

Figure 3: Velocity field when the valve is half way closed from above (top) and fully closed from below (bottom).

Figure 4 shows a plot of the flow rates (integral of the velocity vector over the outlets) in the upper and lower channels as well as the total flow rate. The figure illustrates the periodic flow due to the periodic motion of the valve pin.

Outflow rates [m^3/s]

Figure 4: The blue line (solid) shows flow rate in the upper branch as a function of time, while the green line shows the flow rate in the lower branch. The red line shows the sum of the flow in the two branches.

Notes About the COMSOL Implementation

The inequalities used to describe the pin motion are, in the COMSOL Multiphysics implementation, replaced by smooth step functions.

Model Library path: COMSOL_Multiphysics/Fluid_Dynamics/fluid_valve

Modeling Instructions

MODEL WIZARD

I Go to the Model Wizard window.

2 Click the 2D button.
3 Click Next.
4 In the Add physics tree, select Fluid Flow $>$ Single-Phase Flow>Laminar Flow (spf).
5 Click Next.
6 Find the Studies subsection. In the tree, select Preset Studies>Time Dependent.
7 Click Finish.

GLOBAL DEFINITIONS

Parameters

I In the Model Builder window, right-click Global Definitions and choose Parameters.
2 Go to the Settings window for Parameters.
3 Locate the Parameters section. In the Parameters table, enter the following settings:

NAME	EXPRESSION	DESCRIPTION
v_max	$0.25[\mathrm{~m} / \mathrm{s}]$	Maximum inlet velocity
eta_0	$1 \mathrm{e}-5[\mathrm{Pa*s}]$	Fluid viscosity
eta_inf	$1[\mathrm{Pa*s}]$	Large viscosity
x0	$8.7[\mathrm{~mm}]$	Valve, left end point
x1	$9.2[\mathrm{~mm}]$	Valve, right end point
y0	$1.5[\mathrm{~mm}]$	Pin height parameter
y_max	$1.5[\mathrm{~mm}]$	Pin amplitude
scale	$1 e-4$	Step function scaling

DEFINITIONS

Variables I

I In the Model Builder window, right-click Model I>Definitions and choose Variables.
2 Go to the Settings window for Variables.

3 Locate the Variables section. In the Variables table, enter the following settings:

NAME	EXPRESSION	DESCRIPTION
v_pin	$\begin{aligned} & \mathrm{y} \mathrm{max}^{*} \mathrm{pi}^{*} 2[1 / \mathrm{s}] * \\ & \cos \left(2 * \mathrm{pi}^{*} \mathrm{t}[1 / \mathrm{s}]\right) \end{aligned}$	Pin velocity
y1	-y0+y_max*sin(2*pi*t[1/s])	Lower pin top position
y2	y $0+\mathrm{y}$ _max*sin(2*pi*t[1/s])	Upper pin bottom position
x_range	$\begin{aligned} & \operatorname{step} 1((x-x 0)[1 / m])^{*} \\ & (1-\operatorname{step} 1((x-x 1)[1 / m])) \end{aligned}$	Horizontal pin range
y_range	$\begin{aligned} & 1-\text { step1 }((y-y 1)[1 / m])+ \\ & \text { step1 }((y-y 2)[1 / m]) \end{aligned}$	Vertical pin range
pin	y_range*x_range	Pin extension expression
eta	eta_0+eta_inf*pin	Viscosity expression

Note that the unit syntax used in step function calls for x_{-}range and $y _r$ range is optional.

Now define a step function using the scale parameter you defined in the Parameters node.

Step I
I In the Model Builder window, right-click Definitions and choose Functions>Step.
2 Go to the Settings window for Step.
3 Click to expand the Smoothing section.
4 In the Size of transition zone edit field, type $2 *$ scale.

GEOMETRY I

Import I

I In the Model Builder window, right-click Model I>Geometry I and choose Import.
2 Go to the Settings window for Import.
3 Locate the Import section. Click the Browse button.
4 Browse to the model's Model Library folder and double-click the file fluid_valve.mphbin.

5 Click the Import button.

MATERIALS

Material I

I In the Model Builder window, right-click Model I>Materials and choose Material.

2 Go to the Settings window for Material.
3 Locate the Material Contents section. In the Material contents table, enter the following settings:

PROPERTY	NAME	VALUE
Density	rho	$1\left[\mathrm{~kg} / \mathrm{m}^{\wedge} 3\right]$
Dynamic viscosity	mu	eta

LAMINAR FLOW

The required fluid properties, density and viscosity are defined by the material. Thus, you can directly proceed with defining the boundary conditions.

Inlet I

I In the Model Builder window, right-click Model I>Laminar Flow and choose Inlet.
2 Go to the Settings window for Inlet.
3 Locate the Velocity section. In the U_{0} edit field, type $4 *{ }^{*}$ _max*s* $(1-s)$.
4 Select Boundary 1 only.

Inlet 2

I In the Model Builder window, right-click Laminar Flow and choose Inlet.
2 Select Boundaries 5 and 6 only.
3 Go to the Settings window for Inlet.
4 Locate the Velocity section. In the U_{0} edit field, type v_pin.

Open Boundary I

I In the Model Builder window, right-click Laminar Flow and choose Open Boundary.
2 Select Boundaries 14 and 15 only.

DEFINITIONS

Next, define two integration coupling operators on the two outlet boundaries. You will use them to calculate flow rates in the upper and lower channels.

Integration I

I In the Model Builder window, right-click Model I>Definitions and choose Model Couplings>Integration.
2 Go to the Settings window for Integration.
3 Locate the Source Selection section. From the Geometric entity level list, choose Boundary.

4 Select Boundary 15 only.

Integration 2

I In the Model Builder window, right-click Definitions and choose Model Couplings>Integration.

2 Go to the Settings window for Integration.
3 Locate the Source Selection section. From the Geometric entity level list, choose Boundary.

4 Select Boundary 14 only.

Variables I

Add two new variables that use the just defined integration coupling operators.
I In the Model Builder window, click Variables I.
2 Go to the Settings window for Variables.
3 Locate the Variables section. In the Variables table, enter the following settings:

NAME	EXPRESSION
u_up	$\operatorname{intop1}(\mathrm{u})$
u_down	$\operatorname{intop2}(\mathrm{u})$

MESH I

Free Triangular I

I In the Model Builder window, right-click Model I>Mesh I and choose Free Triangular.
2 Go to the Settings window for Free Triangular.
3 Locate the Domain Selection section. From the Geometric entity level list, choose Entire geometry.

Specify a finer mesh on the pin domain.
Size 1
I Right-click Free Triangular I and choose Size.
2 Go to the Settings window for Size.
3 Locate the Geometric Entity Selection section. From the Geometric entity level list, choose Domain.

4 Select Domain 2 only.
5 Locate the Element Size section. Click the Custom button.

6 Locate the Element Size Parameters section. Select the Maximum element size check box.

7 In the associated edit field, type $0.1[\mathrm{~mm}]$.
Now, define the size for the remaining domains in the default size node.

Size

I In the Model Builder window, click Size.
2 Go to the Settings window for Size.
3 Locate the Element Size Parameters section. In the Maximum element size edit field, type $0.4[\mathrm{~mm}]$.
4 In the Maximum element growth rate edit field, type 1.5.
5 Click the Build All button.

STUDY I

Specify the time range, then compute the solution.

Step I: Time Dependent

I In the Model Builder window, expand the Study I node, then click Step I: Time Dependent.
2 Go to the Settings window for Time Dependent.
3 Locate the Study Settings section. In the Times edit field, type range ($0,0.02,1.5$).
4 In the Model Builder window, right-click Study I and choose Compute.

RESULTS

Velocity (spf)

Plot the velocity magnitude at different time steps.
I In the Model Builder window, click Results>Velocity (spf).
2 Go to the Settings window for 2D Plot Group.
3 Locate the Data section. From the Time list, choose 0.22. Click the Plot button.
4 Repeat the previous instruction for the times 0.22 s and 0.92 s . to generate Figure 3.

ID Plot Group 3

Finally, plot of the flow rates in the upper and lower channels as well as the total flow rate (Figure 4).

I In the Model Builder window, right-click Results and choose ID Plot Group.
2 Right-click Results> ID Plot Group 3 and choose Global.
3 Go to the Settings window for Global.
4 Locate the \mathbf{y}-Axis Data section. In the table, enter the following settings:

EXPRESSION	DESCRIPTION
u_up	Flow rate, upper outlet
u_down	Flow rate, lower outlet
u_up+u_down	Total flow rate

5 Click to expand the Coloring and Style section.
6 Find the Line markers subsection. From the Marker list, choose Cycle.
7 Locate the Legends section. Select the Show legends check box.
8 In the Model Builder window, click ID Plot Group 3.
9 Go to the Settings window for 1D Plot Group.
10 Locate the Title section. From the Title type list, choose Manual.
II In the Title text area, type Outflow rates [m^3/s].
12 Click the Plot button.
The figure illustrates the periodic flow due to the periodic motion of the valve pin.

