Centrifugal Governor Simulator
Application ID: 31011
Centrifugal governors, a specific type of governor, control the speed of an engine by regulating the amount of admitted fuel. In order to maintain a near-constant speed, regardless of the load or fuel supply conditions, centrifugal governors use the principle of proportional control. While the governor is in operation, it is critical that it quickly reaches a new steady-state configuration. Hence, the spring and damper design is important.
In the Centrifugal Governor Simulator app, you can perform a rigid body analysis of a spring-loaded centrifugal governor in order to find the sleeve motion, sleeve equilibrium position, and the natural frequency of the system. You can do this by performing a transient analysis to compute the sleeve motion and trajectory of the flyballs, a stationary analysis to compute the equilibrium configuration of the governor, or an eigenfrequency analysis to compute the mode shape of the governor and its damping characteristics.
Many of the geometric parameters can be changed, as well as the spring constant and damping coefficient, and the density of the flyballs and their linkages.

This model example illustrates applications of this type that would nominally be built using the following products:
however, additional products may be required to completely define and model it. Furthermore, this example may also be defined and modeled using components from the following product combinations:
The combination of COMSOL® products required to model your application depends on several factors and may include boundary conditions, material properties, physics interfaces, and part libraries. Particular functionality may be common to several products. To determine the right combination of products for your modeling needs, review the Specification Chart and make use of a free evaluation license. The COMSOL Sales and Support teams are available for answering any questions you may have regarding this.