Pharmaceutical Tableting Process

Introduction

Powder compaction is a widely adopted manufacturing process not only in the ceramic and automotive industries, but also in the pharmaceutical industry due to its high flexibility, high material utilization, and better control over quality. The Capped Drucker-Prager (DPC) model is popular for modeling compaction processes of pharmaceutical powders, due to easy characterization and calibration of the material parameters with experimental data. For simulating pharmaceutical powder compaction using the DPC model, the material properties are considered as density dependent.

This model is inspired by the example presented in Ref. 1. In particular, the calibrated material properties for the DPC model presented in Ref. 1 are used. Note that because the formulation of the DPC model presented in Ref. 1 differs from the one in COMSOL Multiphysics, a material property mapping is needed before using these parameters directly.

A pharmaceutical powder known as microcrystalline cellulose (MCC) is compacted. The constitutive material properties are calibrated using experiments. Friction between the metal powder and the die is taken into account.

Model Definition

The geometry of the workpiece (pharmaceutical powder) and the die are shown in Figure 1. The actual compaction process needs two punches: a fixed bottom punch and a top moving punch. The punches are not modeled explicitly; the fixed bottom punch is modeled as a fixed axial displacement on the bottom boundary of the workpiece and the top moving punch is modeled by a prescribed displacement in the axial direction. Because the die is rigid compared to the powder, it is not modeled explicitly. Due to axial symmetry, the size of the model can be reduced.

Figure 1: Geometry of the workpiece (pharmaceutical powder) and die.

MATERIAL PROPERTY MAPPING

A series of experiments were performed in Ref. 1 using several specimens that were compacted to different densities to calibrate elastic and plastic material properties. During the compaction process, the density of powder changes, affecting the material properties. Therefore, all material properties are expressed in terms of the relative density of the powder, that is, the ratio between the current density and the true (compacted) density of the powder.

Young's modulus and Poisson's ratio are given as functions of the relative density in Ref. I used in this model. The variation of Poisson's ratio with relative density is small. Hence, a constant Poisson's ratio of 0.16 is used in this model.

The DPC model formulation presented in Ref. 1 is different than the one in COMSOL Multiphysics. Hence, a material property mapping is needed before using these parameters in COMSOL Multiphysics.

Formulation in the Reference

This section presents the formulation of the DPC model used in Ref. 1.
The Drucker-Prager yield function F_{c} and the plastic potential Q_{c} are

$$
F_{c}=Q_{c}=q-p \tan \beta-d
$$

where $q=\sqrt{3 J_{2}}$ is the von Mises equivalent stress, $p=I_{1} / 3$ is the hydrostatic pressure, β is the angle of internal friction, and d is the cohesion. Here, I_{1} is the first stress invariant and J_{2} is the second deviatoric stress invariant.

The elliptical cap yield function $F_{\text {cap }}$ and plastic potential $Q_{\text {cap }}$ are

$$
F_{c a p}=Q_{c a p}=\sqrt{\left(\left(\frac{p-p_{a}}{p_{b}-p_{a}}\right)^{2}+\left(\frac{q}{f q_{a}}\right)^{2}\right)}-1
$$

where $q_{a}=d+p_{a} \tan \beta$, and $f=l+\alpha-\alpha / \cos \beta$. The eccentricity parameter, \bar{R}, is given by

$$
\bar{R}=\frac{p_{b}-p_{a}}{q_{a}}
$$

The Drucker-Prager cone is connected with the elliptical cap using a transition surface that does not have any physical meaning but serves as a smooth transition between the cone and cap surfaces. By using a transition surface, it is possible to control the variables $p_{\mathrm{a}}, p_{\mathrm{b}}$, and R independently.

The hardening law given is given by

$$
p_{b}=A e^{B \varepsilon_{p o o l}}
$$

where $\varepsilon_{p \mathrm{vol}}$ is the volumetric plastic strain, and A and B are the material constants calibrated after conducting experiments.

The relation between the current relative density R_{D} and the volumetric plastic strain is given by

$$
R_{D}=R_{D 0} e^{\varepsilon_{p o o l}}
$$

where $R_{\mathrm{D} 0}$ is initial relative density.

Formulation in COMSOL Multiphysics

In this section, the formulation of the DPC model implemented in COMSOL
Multiphysics is presented and a relation between the COMSOL material parameters with those used in Ref. 1 is established.

The Drucker-Prager yield function F_{c} and the plastic potential Q_{c} are

$$
F_{c}=Q_{c}=\sqrt{J_{2}}+\alpha I_{1}-k
$$

where α and k are the Drucker-Prager parameters. The relationship between the DruckerPrager parameters in COMSOL and Ref. 1 are

$$
\alpha=\frac{\tan \beta}{3 \sqrt{3}}, k=\frac{d}{\sqrt{3}}
$$

The elliptical cap yield function $F_{\text {cap }}$ and plastic potential $Q_{\text {cap }}$ are

$$
F_{\text {cap }}=Q_{\text {cap }}=\left(\frac{I_{1}-I_{a}}{I_{b}-I_{a}}\right)^{2}+\left(\frac{\sqrt{J_{2}}}{J_{a}}\right)^{2}-1
$$

where J_{a} is the ordinate on $\sqrt{J_{2}}$ axis at $I_{1}=I_{a}$.
Hence, the eccentricity parameter R is given by

$$
R=\frac{I_{a}-I_{b}}{J_{a}}=3 \sqrt{3} \bar{R}
$$

In COMSOL, no transition zone is required between the Drucker-Prager cone and the elliptical cap, as the cone always meets the cap at the point of tangency, so there is a unique and smooth transition between the two surfaces. Hence, the variables I_{a} and J_{a} are not free variables but determined based on α, k, R, and I_{b}.

The hardening law is,

$$
\begin{gathered}
p_{b}=p_{b 0}-K_{\mathrm{iso}} \log \left(1+\frac{\varepsilon_{p \mathrm{vol}}}{\varepsilon_{p \mathrm{vol}, \mathrm{max}}}\right) \\
I_{b}=-3 p_{b}
\end{gathered}
$$

where $p_{\mathrm{b} 0}$ is the initial location of the cap, K_{iso} is the isotropic hardening modulus, and $\varepsilon_{p \text { vol,max }}$ is the maximum volumetric plastic strain.

It is clear that the hardening laws in Ref. 1 and in COMSOL are different. The parameters of the hardening law $K_{\text {iso }}$ and $\varepsilon_{p \text { vol,max }}$ are chosen in such way that it is similar to the hardening law curve given in Ref. 1. The initial location of the cap $p_{\mathrm{b} 0}$ is found out using values of $p_{\mathrm{a} 0}, J_{\mathrm{a} 0}$ and R.

For the small plastic strains plasticity model, the relation between current relative density R_{D} and volumetric plastic strain is given by

$$
R_{D}=R_{D 0} e^{\varepsilon_{p o o l}}
$$

For the large plastic strains plasticity model, the relation between current relative density R_{D} and volumetric plastic strain is given by

$$
R_{D}=R_{D 0} J_{p}^{-1}
$$

where J_{p} is plastic volume ratio. In this example, the large plastic strains plasticity model is used.

All the calibrated elastic and plastic material properties given in Ref. I starts at relative density at 0.6 , while in the powder compaction example presented in Ref. 1 the initial relative density is below 0.6 (exact value is not known). It is not mentioned how the material properties are extrapolated for the relative density below 0.6 . To avoid this ambiguity for the compaction process presented in this model the initial relative density is assumed as 0.6 , and the height of geometry is almost 33% smaller than in Ref. 1 .

The penalty contact method with Coulomb friction (coefficient of friction to be 0.1) is used to model the contact interaction between workpiece and die, same as Ref. l.

BOUNDARY CONDITIONS

The applied boundary conditions are:

- The die is fixed.
- The axial displacement of the lower face of the workpiece is constrained.
- The axial displacement of the upper face of the pharmaceutical powder is controlled by a parameter called disp.

Figure 2: von Mises stress at the end of compaction.
Figure 2 shows the von Mises stress at the end of compaction for the pharmaceutical powder mold. The stress is maximum in top periphery while lower in bottom periphery. The higher and lower stress rings are visible at the top and bottom surfaces of the compacted mold, which is consistent with the experimental observations; see Ref. 1.

Figure 3 shows the volumetric plastic strain at the end of compaction for the pharmaceutical powder mold. There is large variation in volumetric plastic strain from the bottom face to the top face, with the maximum plastic strain occurring at the top. Due to friction, stress concentration at the corners gives the maximum volumetric plastic strain.

The relative density distribution at different stages of compaction processes is shown in Figure 4. During all stages of compaction, the high density zone is formed at the top end while a low density zone is formed at the bottom end until the density is reaches the true density of the powder at the end of compaction. Due to friction, a nonuniform density is observed at the powder mold, which is consistent with the experimental observations reported in Ref. 1.

Figure 3: Volumetric plastic strain at the end of compaction.

Surface: Current relative density (1)

Figure 4: Relative density at various stages of compaction process.
Figure 5 shows the punch forces versus axial compaction in the compaction process. The yielding starts occurring at the very early stages of the compaction process.

Figure 5: Punch force versus axial compaction.
Notes About the COMSOL Implementation
In the compaction process, the interaction between the workpiece and the die is modeled using a contact node. The die is assumed to be rigid due to its high stiffness compared to the powder mold. As the die is rigid and fixed, it does not need to be modeled explicitly. In the contact node, the die is considered as the destination. To model this situation, an option called Source external to current physics is selected.

References

1. A. Baroutaji, S. Lenihan, and K. Bryan, "Combination of finite element method and Drucker-Prager Cap material model for simulation of pharmaceutical tableting process," Material Science and Engineering Technology, vol. 48, no. 11, 2017.
```
Application Library path: Nonlinear_Structural_Materials_Module/ Porous_Plasticity/pharmaceutical_tableting_process
```


Modeling Instructions

From the File menu, choose New.

NEW

In the New window, click Model Wizard.

MODEL WIZARD

I In the Model Wizard window, click 2D Axisymmetric.
2 In the Select Physics tree, select Structural Mechanics>Solid Mechanics (solid).
3 Click Add.

4 Click
 Study.

5 In the Select Study tree, select General Studies>Stationary.

6 Click \boxtimes Done.

GEOMETRY I

Model parameters are available in text file.

GLOBAL DEFINITIONS

Parameters I

I In the Model Builder window, under Global Definitions click Parameters I.
2 In the Settings window for Parameters, locate the Parameters section.

3 Click Load from File.

4 Browse to the model's Application Libraries folder and double-click the file pharmaceutical_tableting_process_parameters.txt.

Youngs Modulus

I In the Home toolbar, click $f(x)$ Functions and choose Global>Interpolation.
2 In the Settings window for Interpolation, type Youngs Modulus in the Label text field.
3 Locate the Definition section. In the Function name text field, type EE.

4 Click Load from File.

5 Browse to the model's Application Libraries folder and double-click the file pharmaceutical_tableting_process_Youngs_modulus.txt.

6 Locate the Units section. In the Argument table, enter the following settings:

Argument	Unit
t	1

7 In the Function table, enter the following settings:

Function	Unit
EE	MPa

Drucker Prager Parameter k

I In the Home toolbar, click $f(X)$ Functions and choose Global>Analytic.
2 In the Settings window for Analytic, type Drucker Prager Parameter kin the Label text field.

3 In the Function name text field, type Kd.
4 Locate the Definition section. In the Expression text field, type 0.2955*exp (4.5642* x)/sqrt(3).

5 Locate the Units section. In the table, enter the following settings:

Argument	Unit
x	1

6 In the Function text field, type MPa.
7 Locate the Plot Parameters section. In the table, enter the following settings:

Argument	Lower limit	Upper limit
x	0.6	0.875

Drucker Prager Parameter alpha
I In the Home toolbar, click $f(x)$ Functions and choose Global>Analytic.
2 In the Settings window for Analytic, type Drucker Prager Parameter alpha in the Label text field.

3 In the Function name text field, type Alpha.
4 Locate the Definition section. In the Expression text field, type $\tan \left(\left(12.628^{*} x+\right.\right.$ 56.194) [deg])/(3*sqrt(3)).

5 Locate the Units section. In the table, enter the following settings:

Argument	Unit
x	1

6 In the Function text field, type 1.
7 Locate the Plot Parameters section. In the table, enter the following settings:

Argument	Lower limit	Upper limit	Unit
x	0.6	0.875	I

Hardening Function

I In the Home toolbar, click $f(x)$ Functions and choose Global>Analytic.
2 In the Settings window for Analytic, type Hardening Function in the Label text field.
3 In the Function name text field, type Pbh.
4 Locate the Definition section. In the Expression text field, type -KIso* $\log (1+x /$ Epvolmax).

5 Locate the Units section. In the table, enter the following settings:

Argument	Unit
x	1

6 In the Function text field, type Pa.
7 Locate the Plot Parameters section. In the table, enter the following settings:

Argument	Lower limit	Upper limit
x	-1.2	-0.6

GEOMETRY I
Rectangle I (rl)
I In the Geometry toolbar, click \square Rectangle.
2 In the Settings window for Rectangle, locate the Size and Shape section.
3 In the Width text field, type RO.
4 In the Height text field, type HO.
Rectangle 2 (r2)
I Right-click Rectangle I (rI) and choose Duplicate.
2 In the Settings window for Rectangle, locate the Size and Shape section.

3 In the Width text field, type RO/4.
4 Locate the Position section. In the \mathbf{r} text field, type RO.
5 Click Build All Objects.

Form Union (fin)

I In the Model Builder window, under Component I (compl)>Geometry I click Form Union (fin).

2 In the Settings window for Form Union/Assembly, locate the Form Union/Assembly section.
3 From the Action list, choose Form an assembly.
4 From the Pair type list, choose Contact pair.
5 In the Geometry toolbar, click Build All.
Add a nonlocal integration coupling operator to compute the axial force.

DEFINITIONS

Integration I (intop I)
I In the Definitions toolbar, click Nonlocal Couplings and choose Integration.
2 In the Settings window for Integration, locate the Source Selection section.
3 From the Geometric entity level list, choose Boundary.
4 Select Boundary 3 only.
Integration 2 (intop2)
I Right-click Integration I (intop I) and choose Duplicate.
Add a nonlocal integration coupling operator to compute the axial compaction.
2 In the Settings window for Integration, locate the Source Selection section.
3 Click Clear Selection.
4 Select Boundary 4 only.
5 Locate the Advanced section. Clear the Compute integral in revolved geometry check box.

Variables I

I In the Model Builder window, right-click Definitions and choose Variables.
2 In the Settings window for Variables, locate the Variables section.

3 In the table, enter the following settings:

Name	Expression	Unit	Description
Force	intop1(-solid.sz)	N	Punch force
delta	1-intop2(1)/H0		Axial compaction
Rho	Rhof* solid.lemm1.popl1.rhore 1		Current powder density

In subsequent steps, the side domain will be not be part of the physics. Hence use the toggle button in Contact Pair to switch the boundaries, so that the workpiece boundaries are chosen as destination boundaries.

Contact Pair I (apl)

I In the Model Builder window, click Contact Pair I (apl).
2 In the Settings window for Pair, click the \ddagger Swap Source and Destination button.
Domains 2 (die) is considered as rigid and fixed, hence there is no need to consider them in physics, only a mesh is required.

SOLID MECHANICS (SOLID)

I In the Model Builder window, under Component I (compl) click Solid Mechanics (solid).
2 In the Settings window for Solid Mechanics, locate the Domain Selection section.
3 Click Clear Selection.
4 Select Domain 1 only.
Linear Elastic Material I
In the Model Builder window, under Component I (comp I)>Solid Mechanics (solid) click Linear Elastic Material I.

Porous Plasticity I

I In the Physics toolbar, click \bigoplus_{0} Attributes and choose Porous Plasticity.
2 In the Settings window for Porous Plasticity, locate the Porous Plasticity Model section.
3 From the Plasticity model list, choose Large plastic strains.
4 From the Yield function F list, choose Capped Drucker-Prager.
5 Find the Isotropic hardening model subsection. From the list, choose Exponential.
6 In the $p_{\mathrm{b} 0}$ text field, type Pb 0 .

Contact I

In the Model Builder window, under Component I (comp I)>Solid Mechanics (solid) click Contact I.

Friction I

I In the Physics toolbar, click \bigoplus_{ϕ} Attributes and choose Friction.
2 In the Settings window for Friction, locate the Friction Parameters section.
3 In the μ text field, type 0.1.

Prescribed Displacement I

I In the Physics toolbar, clickBoundaries and choose Prescribed Displacement.

2 Select Boundary 2 only.
3 In the Settings window for Prescribed Displacement, locate the Prescribed Displacement section.

4 Select the Prescribed in z direction check box.

Prescribed Displacement 2

I In the Physics toolbar, click Ξ Boundaries and choose Prescribed Displacement.
2 Select Boundary 3 only.
3 In the Settings window for Prescribed Displacement, locate the Prescribed Displacement section.

4 Select the Prescribed in z direction check box.
5 In the $u_{0 z}$ text field, type - disp.

MATERIALS

Microcrystalline Cellulose (MCC)

I In the Model Builder window, under Component I (compl) right-click Materials and choose Blank Material.

2 In the Settings window for Material, type Microcrystalline Cellulose (MCC) in the Label text field.

3 Select Domain 1 only.

4 Locate the Material Contents section. In the table, enter the following settings:

Property	Variable	Value	Unit	Property group
Young's modulus	E	EE(nojac(soli d.lemm1.popl1 .rhorel))	Pa	Young's modulus and Poisson's ratio
Poisson's ratio	nu	Nu	I	Young's modulus and Poisson's ratio
Density	rho	Rho	Basic	
Initial void volume fraction	f0	F0	Pg/m	
Drucker-Prager alpha coefficient	alphaDrucker	Alpha(nojac (s olid.lemm1.po pl1.rhorel))	I	Drucker-Prager
Drucker-Prager k coefficient	kDrucker	Kd(nojac (soli d.lemm1.popl1	Pa	Drucker-Prager
Isotropic hardening modulus	Kiso	KIso	Morel))	Mohr-Coulomb
Maximum plastic volumetric strain	epvolmax	Epvolmax	I	Mohr-Coulomb
Ellipse aspect ratio	Rcap	Rc	Mohr-Coulomb	

MESH I

Mapped I

In the Mesh toolbar, click 抯 Mapped.

Distribution I

I Right-click Mapped I and choose Distribution.
2 Select Boundaries 7 and 8 only.
3 In the Settings window for Distribution, locate the Distribution section.
4 In the Number of elements text field, type 1.
Distribution 2
I In the Model Builder window, right-click Mapped I and choose Distribution.
2 Select Boundary 2 only.

3 In the Settings window for Distribution, locate the Distribution section.
4 In the Number of elements text field, type 12.
Distribution 3
I Right-click Mapped I and choose Distribution.
2 Select Boundary 1 only.
3 In the Settings window for Distribution, locate the Distribution section.
4 In the Number of elements text field, type 16.
5 In the Model Builder window, right-click Mesh I and choose Build All.

STUDY I

Step I: Stationary
I In the Model Builder window, under Study I click Step I: Stationary.
2 In the Settings window for Stationary, click to expand the Study Extensions section.
3 Select the Auxiliary sweep check box.
4 Click + Add.
5 In the table, enter the following settings:

Parameter name	Parameter value list	Parameter unit
disp (Displacement parameter)	range $(0,0.025,4)$	mm

Use customized solver settings in order to get the faster convergence.
Solution I (soll)
I In the Study toolbar, click ${ }^{[/ F}$, Show Default Solver.
2 In the Model Builder window, expand the Solution I (soll) node.
3 In the Model Builder window, expand the Study I>Solver Configurations>
Solution I (solI)>Stationary Solver I node, then click Parametric I.
4 In the Settings window for Parametric, click to expand the Continuation section.
5 Select the Tuning of step size check box.
6 In the Initial step size text field, type 1E-5.
7 In the Minimum step size text field, type 1E-5.
8 From the Predictor list, choose Automatic.
9 In the Study toolbar, click $=$ Compute.
First create the revolution datasets needed to create the plots used in the documentation.

RESULTS

Study I/Solution I (2) (sol I)
I In the Model Builder window, expand the Results>Datasets node.
2 Right-click Results>Datasets>Study I/Solution I (soll) and choose Duplicate.

Selection

I In the Results toolbar, click Attributes and choose Selection.
2 In the Settings window for Selection, locate the Geometric Entity Selection section.
3 From the Geometric entity level list, choose Domain.
4 Select Domain 2 only.

Revolution 2D 2

I In the Model Builder window, under Results>Datasets right-click Revolution 2D I and choose Duplicate.

2 In the Settings window for Revolution 2D, locate the Data section.
3 From the Dataset list, choose Study I/Solution I (2) (soll).

Surface 2

I In the Model Builder window, right-click Stress, 3D (solid) and choose Surface.
2 In the Settings window for Surface, locate the Data section.
3 From the Dataset list, choose Revolution 2D 2.
4 From the Solution parameters list, choose From parent.
5 Locate the Expression section. In the Expression text field, type 1.
6 Click to expand the Title section. From the Title type list, choose None.
7 Locate the Coloring and Style section. From the Coloring list, choose Uniform.
8 From the Color list, choose Gray.

Material Appearance I

I Right-click Surface 2 and choose Material Appearance.
2 In the Settings window for Material Appearance, locate the Appearance section.
3 From the Appearance list, choose Custom.
4 From the Material type list, choose Steel.
Stress, 3D (solid)
I Click the Show Grid button in the Graphics toolbar.
2 In the Model Builder window, under Results click Stress, 3D (solid).

3 In the Stress, 3D (solid) toolbar, click \bigcirc Plot.

Relative Density

I Right-click Stress, 3D (solid) and choose Duplicate.
2 Drag and drop Stress, 3D (solid) I below Stress, 3D (solid).
3 In the Settings window for 3D Plot Group, type Relative Density in the Label text field.

4 Locate the Data section. From the Parameter value (disp (mm)) list, choose I.
5 Click to expand the Title section. From the Title type list, choose Manual.
6 In the Title text area, type Surface: Current relative density (1).
7 Clear the Parameter indicator text field.
8 Locate the Color Legend section. Select the Show maximum and minimum values check box.

9 From the Position list, choose Bottom.

Surface I

I In the Model Builder window, expand the Relative Density node, then click Surface I.
2 In the Settings window for Surface, click Replace Expression in the upper-right corner of the Expression section. From the menu, choose Component I (compI)>Solid Mechanics> Porous plasticity>solid.lemm I.popII.rhorel-Current relative density.

Deformation

I In the Model Builder window, expand the Surface I node, then click Deformation.
2 In the Settings window for Deformation, locate the Expression section.
3 From the Coordinate system list, choose Global Cartesian.
4 In the \mathbf{X} component text field, type 0 .

Surface 3

I In the Model Builder window, under Results>Relative Density right-click Surface I and choose Duplicate.

2 In the Settings window for Surface, locate the Data section.
3 From the Dataset list, choose Revolution 2D I.
4 From the Parameter value (disp (mm)) list, choose 2.
5 Click to expand the Inherit Style section. From the Plot list, choose Surface I.

Deformation

I In the Model Builder window, expand the Surface 3 node, then click Deformation.

2 In the Settings window for Deformation, locate the Expression section.
3 In the \mathbf{X} component text field, type $2 *$ RO.

Surface 4

In the Model Builder window, under Results>Relative Density right-click Surface $\mathbf{3}$ and choose Duplicate.

Deformation

I In the Model Builder window, expand the Surface 4 node.
2 Right-click Results>Relative Density>Surface 4>Deformation and choose Delete.

Translation I

I In the Model Builder window, right-click Surface 4 and choose Translation.
2 In the Settings window for Translation, locate the Translation section.
3 In the \mathbf{x} text field, type 2*R0.
Surface 4
I In the Model Builder window, click Surface 4.
2 In the Settings window for Surface, locate the Data section.
3 From the Dataset list, choose Revolution 2D 2.
4 From the Solution parameters list, choose From parent.
5 Locate the Expression section. In the Expression text field, type 1.
6 Locate the Inherit Style section. Clear the Color check box.
7 Locate the Coloring and Style section. From the Coloring list, choose Uniform.
8 From the Color list, choose Gray.

Material Appearance I

I Right-click Surface 4 and choose Material Appearance.
2 In the Settings window for Material Appearance, locate the Appearance section.
3 From the Appearance list, choose Custom.
4 From the Material type list, choose Steel.
Line I
I In the Model Builder window, right-click Relative Density and choose Line.
2 In the Settings window for Line, locate the Expression section.
3 In the Expression text field, type 1.
4 Locate the Coloring and Style section. From the Coloring list, choose Uniform.

5 From the Color list, choose Black.

Translation I

I Right-click Line I and choose Translation.
2 In the Settings window for Translation, locate the Translation section.
3 In the \mathbf{x} text field, type 2*R0.
4 In the y text field, type 0.
5 In the \mathbf{z} text field, type 0.
Duplicate the above Surface plots and change settings in the respective Deformation and Translation nodes to show the different stages of compaction.

Relative Density

I Click the \square Zoom Extents button in the Graphics toolbar.

2 In the Model Builder window, under Results click Relative Density.
3 In the Relative Density toolbar, click \square Plot.

Volumetric Plastic Strain (solid)

I In the Model Builder window, click Volumetric Plastic Strain (solid).
2 In the Volumetric Plastic Strain (solid) toolbar, click © Plot.
Create a 1D plot of punch force for tableting processes.

Punch Force Vs. Axial Compaction

I In the Home toolbar, click Add Plot Group and choose ID Plot Group.
2 In the Settings window for ID Plot Group, type Punch Force Vs. Axial Compaction in the Label text field.

3 Locate the Plot Settings section. Select the \mathbf{x}-axis label check box.
4 In the associated text field, type Axial Compaction (1).
5 Select the \mathbf{y}-axis label check box.
6 In the associated text field, type Punch Force (kN).

Global I

I Right-click Punch Force Vs. Axial Compaction and choose Global.
2 In the Settings window for Global, locate the \mathbf{y}-Axis Data section.
3 In the table, enter the following settings:

Expression	Unit	Description
Force	kN	Punch Force

4 Locate the x-Axis Data section. From the Parameter list, choose Expression.
5 In the Expression text field, type delta.
6 Click to expand the Legends section. Clear the Show legends check box.
7 In the Punch Force Vs. Axial Compaction toolbar, click \triangle Plot.

