

Dipartimento di Fisica e Astronomia

- Università degli Studi di Catania -

Istituto Nazionale di Fisica Nucleare

Institut Supérieur Industriel de Bruxelles - Haute Ecole Paul-Henri Spaak -

Optimization of the design of a GEM Tracker based on gas flow simulations with COMSOL

Valérie De Smet

COMSOL Conference Stuttgart

26 October 2011

1 Introduction

- **GEM (Gas Electron Multiplier)** chambers currently under development
- Part of tracking systems of charged particles for high luminosity spectrometers in Hall A at JLab

Upgrade magnets and power Add 5 supplies cryomodules 20 cryomodules Add arc 20 cryomodules Add 5 cryomodules • Investigate the fundamental structure **CEBAF** (Continuous Electron Beam Accelerator Facility) of protons and neutrons

Jefferson Lab

1 Introduction

Front Tracker:

- two 10 x 20cm² silicon strip planes

- six 40 x 150cm² GEM chambers:

each made up of three adjacent 40 x 50 cm² triple-GEM modules

2 The triple-GEM detector

• GEM foil

 $50\mu m$ insulating Kapton coated on both sides with 3 to 5 μm Cu

Densily perforated:

D = 70 μm d = 50 μm P = 140 μm

3 GEM chambers of the SBS Front Tracker

• The 40 x 50 cm² triple-GEM modules

4 Study and optimization of the gas system

4.2 Method (1)

Ar-CO₂ (70/30) gas flow simulation: COMSOL Multiphysics CFD module

2D Geometry & Thin-Film Flow Model

Film thicknesses:

- 2 mm in sectors
- 1 mm in grid openings, inlets and outlets
 detector response

• Thin-Film Flow Model:

CFD Module User's Guide v4.1, COMSOL AB, 2010.

- film thickness *h* << dimensions solid structures
- small curvature
- pressure *p* constant over film thickness
- parabolic velocity profile over film thickness

- Newtonian fluid
- laminar
- isothermal
- volume forces neglected

• Reynolds equation:

$$\vec{\nabla}_{\mathrm{tg}} \cdot \vec{\nabla}_{\mathrm{tg}} p_f = 0$$
$$\vec{U} = -\frac{h^2}{12\mu} \vec{\nabla}_{\mathrm{tg}} p_f$$

independent of r and p_a

- 3 volume renewals per hour => total inlet flow 60 cm³/min
- constant density $r=1.8417 \text{ kg/m}^3$ (U_s = 314 m/s >> U_i = 0.0625 m/s)
- constant dynamic viscosity $m=1.9696 \cdot 10^{-5}$ Pa.s (Reichenberg's formula)
- immobile solid structures: *h* constant, $Dh_m = Dh_b = u_m = u_b = 0$
- continuum => Q_{ch} = 1

(ambient pressure $p_a = 1$ atm)

• Frame in its prototype version:

Velocity magnitude (m/s) & streamlines

4.4 Simulation 2

• Modified inlet and outlet configuration:

4.4 Simulation 2 (continued)

• Modified inlet and outlet configuration:

circular joints 1.5 mm radius at inlets & outlets
=> slight reduction of the high velocities inside sector
 & stabilization of the boundary layers

• Reduction from 18 to 12 sectors:

⇒ Minimum number of sectors: 9

(sector area = 222 cm^2)

Conservative choice: 12 sectors

(sector area = 166 cm^2)

4.5 Simulation 3 (continued)

• Reduction from 18 to 12 sectors:

Velocity magnitude (m/s)

4.6 Simulation 4

• Enlargement of openings near inlets & outlets:

4.7 Simulation 5

• Modifying the openings in the shortest spacers:

4.8 Simulation 6

• Doubling the openings in the longest spacers:

Velocity magnitude (m/s)

4.9 Quantitative comparison of the flow uniformity

- 2000 points on a rectangular grid
- Simulation 5 selected as the basis for a new frame design:

9% with U < 0.5 · U_{av} (19 to 20% in Sim. 1)

9% with U > $1.5 \cdot U_{av}$ (15% in Sim. 1)

5 Conclusion

Significant improvement of the gas flow uniformity in the 2 mm gap between 2 GEM foils of a 40 x 50 cm² triple-GEM module

