Ability of Single-Well Injection-Withdrawal Experiments to Estimate Ground Water Velocity

Friedrich Maier*

Klaus Hebig, Yulan Jin, Ekkehard Holzbecher

*Georg-August-Universität Göttingen, GZG
Goldschmidstr. 3, 37077 Göttingen, Germany
Objective

Experiments
- Interwell
- Intrawell
- SWIW (Push-Pull)

Tracers
- conservative
- reactive
- sorbing

Quantities
- ambient groundwater velocity
- residence times
- inter-/surfaces etc.

COMSOL Conference 2011 27.10.2011
Governing Equations

Dispersion-advection-equation:

\[\phi_{\text{eff}} \frac{\partial c}{\partial t} - \nabla \left(\left(D_{\text{disp}} + D_{\text{diff}} \right) \nabla c \right) + v \nabla c = 0 \]

\[D_{xx} = \alpha_l v_x^2 + \alpha_t \frac{v_y^2}{\langle v \rangle} + D_{\text{diff}} \]

\[v = \frac{-K}{\rho W g} \nabla p \]

or analytical solution
Model approach

\[
\bar{c} = \frac{\int v \cdot c}{\int v}
\]

Initial condition
\[c = 0 \]
Boundary condition
\[c = 1 \]

\[
(c-1) \cdot (t \leq t_l) + (v_n \cdot n_x + v_y \cdot n_y) \cdot (t > t_l) = 0
\]
Model approach – Modes

DI & esst:
Solution transfer
Intermediate time stepping

Esst:
Solution transfer

Pde:
Boundary condition change

<table>
<thead>
<tr>
<th>MODEL</th>
<th>DOF</th>
<th>TIME [s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>dl + esst</td>
<td>32896</td>
<td>277</td>
</tr>
<tr>
<td>esst</td>
<td>16448</td>
<td>76</td>
</tr>
<tr>
<td>pde</td>
<td>16448</td>
<td>88</td>
</tr>
</tbody>
</table>
Results - Sensitivity

\[\phi_{eff} \frac{\partial c}{\partial t} - \nabla \left(\left(D_{disp} + D_{diff} \right) \nabla c \right) + v \nabla c = 0 \]
Results – Ambient Groundwater Velocity

Type 1

Type 2
Results – Ambient Groundwater Velocity

Type 2

Type 3
Results – SWIW

- Eff. Porosity: 0.3
- Dispersivity: 0.0025 m
- Darcy velocity: 1.1×10^{-6} m/s
Conclusions

- High sensitivity on dispersivity
- Lower sensitivity in eff. porosity
- In dependence on the ambient ground water velocity we get three main type-curves shapes
 - Good fit of the measured BTC with the modeled BTC for a homogenous aquifer
 - Change of the boundary-type is possible
Outlook

- Implementation of well effects (e.g. skin effect)
- Considering of inhomogeneities (e.g. fracture flow)
- Tracer effects like sorption and reaction
Thank you for your attention!

This work acknowledges financial support from the German Ministry for Environment (BMU) and the EnBW within the project “LOGRO” under grant no. 0325111B, for the opportunity of conducting numerical and field SWIW tracer tests aimed at characterizing deep-sedimentary geothermal reservoirs in Germany. The field data is used by courtesy of Technical University Berlin.