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Abstract: While Comsol Multiphysics has great 
flexibility for modeling photonic devices, the 
computational demands of the general finite 
element method make it most suitable for small 
devices, on the order of a few microns in extent.  
Many integrated optical devices are much larger, 
having lengths of hundreds of microns or 
millimeters.  A beam propagation method 
(BPM), which applies some simplifying 
assumptions that enable the use of a coarser grid 
or mesh, is commonly used to simulate larger 
devices.  In this paper we present an 
implementation of a BPM-like method in 
Comsol Multiphysics and demonstrate its 
application to several common photonic devices. 
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1. Introduction 
 

The greatest computational limitation of the 
finite element method for modeling 
electromagnetic waves is the need for a mesh 
that is finer than the wavelength, λ.  For 
execution on a typical desk-top computer, this 
requirement limits the size of the model domain 
to the order of 1,000 λ3. However, if the 
structure is such that propagation is chiefly along 
a single axis (paraxial waves) the wave can be 
represented as an envelope function multiplied 
by a plane wave.  The plane wave can then be 
factored out, and the simulation can deal only 
with the more slowly varying envelope function.  
Consequently a much coarser mesh can be used. 

 
If the direction of propagation is taken as the 

z-axis, a time-harmonic, scalar wave can be 
represented as 
 
 U(r)=u(r)eik0z (1) 
 
where k0=2πn0/λ, n0 being a suitable background 
index – in practice the effective index of the 
mode being propagated.  Inserting (1) into the 

Helmholtz wave equation leads to the paraxial 
wave equation1: 
 
 ∇2u+2ik0 ∂u/∂z+ k0

2 [(n/n0)2-1]u=0 (2) 
 
where n is the local refractive index.   

 
In most BPM methods, the next step is to 

assume that the envelope function is slowly 
varying, so that the second derivative with 
respect to z can be dropped to make the problem 
tractable in computational terms.  With the 
Comsol FEM solvers, however, this step is 
entirely unnecessary.  Equation (2) can be 
implemented via a PDE mode without further 
simplification. 
 
2. Model Construction 

 
As a test case, we have implemented a scalar, 

two-dimensional version of equation (2) using a 
PDE mode in coefficient form.  The 
corresponding coefficients are expressed as: 

 
c=-1 (3) 
a=k0^2*((n/n0)^2-1)) 
β=(0,2*i*k0) 
all other coefficients=0 

 
The refractive index distribution, n, is specified 
via a sub-domain expression.  The background 
index, n0, is defined as a constant. 
 
2.1 Geometry, Meshing and Boundary 
Conditions  
 

The geometry used consists of two, 
concentric, rectangular regions of space.  The 
inner region is the active area, and the outer 
region is an absorbing layer to prevent 
reflections from the computational boundary.  
For the simple cases discussed here, we chose to 
represent the index variation by a sub-domain 
expression rather than having separate geometry 
objects for, say, the core and cladding of a 
waveguide.   
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The default meshing algorithm was used.  
Only the maximum sub-domain mesh size was 
altered.  A coarser mesh was used in the 
absorbing layer than in the active region.  
Discussion of the effect of mesh size is included 
in Section 3.   

 
The boundaries between the active and 

absorbing regions are continuity conditions, 
except for the input boundary on which the 
launch field is specified using a Dirichlet 
boundary condition.  The outer boundary of the 
absorbing layer is defined to be perfectly 
conducting via the Dirichlet condition, u=0. 
 
2.2 Absorbing Layer  
 

An extensive formalism for perfectly 
matched layers has been developed for 
electromagnetic modeling, but here we have 
chosen to use a much simpler scheme.  In our 
approach the refractive index of the absorbing 
layer is taken to be complex, with the real part 
matched to the background index of the active 
region and the imaginary part increasing 
exponentially.  Thus waves can enter the 
absorbing layer without significant reflection but 
are absorbed before reaching the outer, perfectly 
conducting boundary.  The refractive index in 
the absorbing region is defined as 

 
 n(x)=n0 [1+ie±(x-x0)/∆x] (4) 

 
or an equivalent expression for the y-direction, 
where n0 is the background index.  x0 and ∆x 
are chosen so that the imaginary part is 
negligible at the boundary but increases rapidly 
enough to absorb the wave nearly entirely within 
the thickness of the absorbing layer. 
 
2.3 Solving and Post-processing  
 

The stationary solver was used with default 
settings in all cases.  No major post-processing 
was performed, aside from plotting the square of 
the computed scalar field to represent the optical 
intensity. 
 
3. Results  
 

  In this section results are presented for a few 
of the most common classes of optical 

waveguide devices.  Test cases are chosen to 
illustrate the ability of the method to handle the 
most important phenomena, including off-axis 
propagation and interference effects. 
 
3.1 Straight Waveguide 
 

The simplest case of a straight, step-index 
waveguide provides an illustration of how this 
method relaxes requirements on the mesh size.  
Propagation in a 100-micron long waveguide 
with a core index of 1.41 and a clad index of 
1.40 at a wavelength of 1.5 µm is simulated with 
several values for the maximum mesh size, first 
using the paraxial mode and then using the 
ordinary electromagnetic propagation application 
mode.  Figure 1 shows the results (absolute value 
of u) for the paraxial mode.  Good results, aside 
from a small degree of graininess, are obtained 
even with a maximum element size of 3/2 times 
the wavelength. 

 

   
Figure 1. Simulations (absolute value of scalar 
field) of a 100-micron long straight waveguide 
with maximum mesh size = 3/2 λ (left), λ 
(center) and 1/2 λ (right). 
 

Figure 2 shows results for the same 
waveguide geometry using the 2D, in-plane, TE-
wave application mode.  In this case, a maximum 
element size of 2λ/3 produces unacceptable 
results, with no discernable guided-wave 
propagation.  Even a maximum element size of 
λ/3 gives marginal results, with significant 
fluctuations in the guided wave.  A maximum 
element size of λ/6 produces acceptable results, 
with only small fluctuations visible in the guided 
wave.  Thus the paraxial method allows nearly 



an order-of-magnitude increase in the coarseness 
of the mesh, which translates to two orders of 
magnitude reduction in the number of elements 
for a two-dimensional simulation.  

 

  
 
Figure 2. Simulations (z-component of electric 
field) of a 100-micron long straight waveguide 
using the 2D, in-plane TE-wave application 
mode with maximum mesh size = 2/3 λ (left), 
1/3 λ (center) and 1/6 λ (right). 
 
3.2 Graded-Index Waveguide 

 
A slightly more complex example is a 

graded index waveguide, in which the refractive 
index contrast decreases with distance from the 
z-axis.  For this case we chose a Gaussian profile 
of the form 

 
 ∆n(x)=∆n0 exp(-x2/σ2) (4) 

 
The result, plotted as the square of the scalar 
field (intensity), for ∆n0=0.015 and σ =3.5 µm is 
shown in Figure 3.  As expected for a GRIN 
waveguide, the wave is periodically focused. 
 
3.3 Y-Splitter 

 
A case that illustrates the ability of the model 

to handle propagation at a finite angle away from 
the z-axis is a y-splitter.  For simplicity no 
attempt was made to optimize device design 
through the use of s-bends or tapers.  Results are 
shown in Figure 4.  Here and in subsequent 
examples, unless otherwise stated, the waveguide 
width is 4 microns, background index is 1.4, 
index contrast is 0.01, and wavelength is 1.5 µm. 
 

 
 
Figure 3. Simulation of 400-micron long graded-
index waveguide.  Refractive index distribution (left) 
and intensity (right). 

 
3.4 Mach-Zehnder Interferometer 
 

Interference effects are fully encompassed 
by the model, as shown by the case of a Mach-
Zehnder interferometer.  Results are shown in 
Figure 5 for two cases: zero phase difference 
between the two arms, leading to constructive 
interference at the output, and a π phase 
difference between the two arms, resulting in 
destructive interference. 

 

 
 
Figure 4. Refractive index distribution (left) and 
optical intensity (right) for 400-micron long Y-splitter. 
 



 
 
Figure 5. Simulation of 500-micron long Mach-
Zehnder interferometer with no phase difference (left) 
and π phase difference (right) between the arms. 

 
3.5 Directional Coupler 
 

Another important phenomenon that is 
captured by the model is evanescent wave 
coupling between waveguides.  The simplest 
case of a symmetrical coupler, in which the two 
parallel waveguides are identical, is shown in 
Figure 6.  A wave is launched into the left 
waveguide and couples completely into the right 
waveguide over a transfer length, L.  It then 
couples back to the left guide over an additional 
distance L. 

 

 
Figure 6. Refractive index distribution (left) and 
optical intensity (right) for a 500-micron long, 
symmetrical directional coupler. 
 

The transfer length L can be calculated 
easily by coupled mode theory for the simple 
case of identical, planar waveguides2.  Figure 7 
shows the transfer length vs. the gap between 
waveguides as calculated by coupled mode 
theory and by the paraxial model.  The paraxial 
model gives a slightly lower value for the 
transfer length, especially for larger gap values.  
The cause of the discrepancy is not known with 
certainty; however it may be related to the fact 
that we are using a scalar model, whereas the 
coupled mode theory calculations were done 
specifically for the case of a TE mode. 
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Figure 7. Transfer length as a function of gap between 
waveguides for a symmetrical directional coupler. 
Paraxial model (*) vs. coupled mode theory (line).  
Waveguide width=4 µm, background index=1.444, 
wavelength = 1.55 µm, index contrast=0.01. 
 
3.6 Multi-mode Interference Coupler 
 
  An additional class of devices that is often 
simulated by BPM is multi-mode interference 
(MMI) couplers.  An MMI device consists of 
one or more single-mode feeds to a multi-mode 
waveguide section.  In our model, the input 
waveguide is extraneous and is omitted.  Due to 
interference among reflections from the side 
walls – or equivalently beats among the modes 
of the multi-mode guide – multiple images of the 
input field are produced periodically along the 
length of the device.  For the case in which the 
input field is symmetrical about the central axis 
of the device, the shortest length at which a two-
fold image occurs is3: 

 
 L2=ncoreWe

2/(2λ) (5) 
 



where We is the effective width of the multi-
mode section, accounting for the Goos-Hanchen 
shift.  For the parameters of our model, L2~400 
µm. 
 
 Figure 7 shows the simulation result for a 
1x2 MMI splitter with W=27 µm and L=410 µm, 
with a Gaussian field launched at the center of 
the input plane.  The expected two-fold image 
occurs at the end of the multi-mode section and 
is coupled into a pair of single-mode output 
waveguides.  This model illustrates the important 
fact that glancing reflections are accounted for 
by the paraxial method.  It is only large-angle or 
backwards reflections that are beyond the scope 
of the paraxial approximation. 
 

 
Figure 7. Intensity distribution in 1x2 MMI splitter.  
The multi-mode section is 410x27 µm. background 
index=1.4, ∆n=0.02, λ=1.55 µm. 
 
3.7 Coupling with a Microlens 
 
  An important consideration is the ability of 
the paraxial method to simulate high-index-
contrast systems.  As a test case, we modeled 
coupling of a free-space beam into a waveguide 
via a microlens, as shown in Figure 8.  Here the 
background index is 1.0, the index of the lens 
and the waveguide cladding are 1.4, and the 
core-clad index contrast is 0.005.  The 
waveguide width is 8 microns, and the radius of 
the circular lens is 100 microns.  (The circular 
shape is not apparent in the figure due to the 
non-unity aspect ratio.) 
 
 In this case it was necessary to use a 
somewhat finer mesh (~0.45 λ) to achieve 
adequate results.  Even so, the computed field is 
somewhat grainy, especially in the low-intensity 

areas.  The result shows that the lens focuses at a 
distance (from the center of the lens) of 
approximately 200 µm.  For comparison, the 
thick lens formulation of geometrical optics4 
predicts a focal length of 175 µm. 

 
Figure 8. Refractive index distribution (left) and 
optical intensity for coupling of a free-space beam into 
a single-mode waveguide via a microlens. 
nbackground=1.0, nglass=1.4, ∆n=0.005, Rlens=100 µm. 
 
4. Extensions of the Model 
 

All examples presented here are for the two-
dimensional, scalar case.  The model is directly 
extendable to three dimensions and non-scalar 
fields.  Aniostropic materials can be modeled 
directly via the tensor nature of the coefficients.  
All of these enhancements increase the 
computational complexity and therefore reduce 
the advantage of the scalar approximation 
relative to the ordinary EM modes. 

 
While the model discussed in this paper was 

implemented via a PDE mode in coefficient 
form, an alternative is to modify the equations in 
the built-in EM propagation modes of the 
RF/photonics module.  All of the built-in 
features of those defined modes, including 
perfectly matched layers, could then be used. 
 
 
 
 



5. Conclusions 
 

 Comsol Multiphysics provides a simple 
framework for implementation of a paraxial 
optical propagation mode.  This method allows 
the use of a much coarser mesh than the ordinary 
electromagnetic propagation modes and thereby 
enables larger devices to be simulated.  A two-
dimensional, scalar version of this method has 
produced qualitatively correct simulation results 
for several of the most common photonic device 
structures, including a graded-index waveguide, 
y-splitter, Mach-Zehnder interferometer and  
directional coupler.  A high-index-contrast case, 
coupling of a free-space beam into waveguide by 
a microlens, has been simulated successfully; 
however with practical mesh sizes the computed 
field in the low-intensity regions is somewhat 
grainy. 

 
Combining the paraxial optical propagation 

mode with the multiphysics capabilities of 
Comsol creates the possibility of creating unified 
models for complex devices, such as high-speed, 
electro-optic modulators, thermo-optic switches 
and grating-based strain sensors. 
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