薄膜型扬声器的声场和电声固多物理耦合模拟分析
by COMSOL Multiphysics

讲者：吴文中教授
25, Nov., 2011
大綱

1. 簡介

2. 駐極體揚聲器之結構建模與驗證

3. 駐極體揚聲器之指向性建模與驗證

4. 結論
1. 簡介
Flexible Thin-film Loudspeaker

http://www.soundtech.com/
http://www.dti.org.tw
http://www.jib.co.kr

NTU Nano-BioMEMS Group
\[F = \frac{\varepsilon r_1 S_c}{8\varepsilon_0} \left(\frac{2\varepsilon_0\varepsilon_r e_{in} + h\sigma_m}{\varepsilon_r (d + \delta) + \varepsilon r_1 h} \right)^2 \]

\[= \frac{\varepsilon r_1 S_c}{2(\varepsilon_r (d + \delta) + \varepsilon r_1 h)^2} \left(\frac{h^2 \sigma_m^2}{4\varepsilon_0} + \varepsilon_r h\sigma_m e_{in} + \varepsilon_0 \varepsilon_r^2 e_{in}^2 \right) \]

Fabricate the flexible electret loudspeaker
SEM of PTFE/COC
2. 驗極體揚聲器之結構建模與驗證
Frequency response and THD of various speakers
Impulse response of various speakers

- Electret loudspeaker
- Mid speaker
- Tweeter
Different shapes and sizes of audio radiation area
Material properties of the electret cell actuator

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Electret-based diaphragm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometry</td>
<td>Square (Length) : 8mm, 10mm, 12mm</td>
</tr>
<tr>
<td></td>
<td>Circle (Radius) : 4mm, 5mm, 6mm</td>
</tr>
<tr>
<td></td>
<td>Hexagon (Edge) : 6mm, 8mm, 10mm</td>
</tr>
<tr>
<td>Thickness (mm)</td>
<td>20×10^{-3}</td>
</tr>
<tr>
<td>Young’s modulus (Pa)</td>
<td>553×10^{6}</td>
</tr>
<tr>
<td>Poisson’s ratio</td>
<td>0.33</td>
</tr>
<tr>
<td>Density (kg/m^3)</td>
<td>460</td>
</tr>
<tr>
<td>Initial normal stress (Pa)</td>
<td>(\sigma_{x_i}=47\times10^3), (\sigma_{y_i}=47\times10^3),</td>
</tr>
</tbody>
</table>
Advanced vibrometer/interferometer device measurement system

NTU Nano-BioMEMS Group
The schematics of the ESPI system
First resonance frequency of electret cell actuator

<table>
<thead>
<tr>
<th>Shape</th>
<th>Square</th>
<th>Circle</th>
<th>Hexagon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size(mm)</td>
<td>Edge 8mm</td>
<td>Edge 10mm</td>
<td>Edge 12mm</td>
</tr>
<tr>
<td>Simulation(Hz)</td>
<td>1216.8</td>
<td>932</td>
<td>747</td>
</tr>
<tr>
<td>Experiment(Hz)</td>
<td>1120</td>
<td>966.67</td>
<td>706.67</td>
</tr>
</tbody>
</table>

[Images of 3D models of square, circle, and hexagon shapes with color gradients representing resonance frequencies]
First resonance frequency of the square shape by AVID

![Graph showing frequency vs. size for different shapes (Square, Hexagonal, Circular)].
The first mode shape by ESPI

Direct correlation → (5,1) Phase shifting

Phase unwrapping → Median filter

The first mode shape

NTU Nano-BioMEMS Group
3. 驗極體場聲器之指向性建模與驗證
Beam patterns of the two shapes at 1k, 2k, and 4k Hz
The beam pattern of the array

The beam pattern of the array \(b(\theta) \equiv v^2(\theta) \)

\[
= \left(\frac{1}{N} \sin(N \cdot \frac{\pi d}{\lambda} \sin \theta) \right)^2 \left(\frac{\sin(\frac{\pi d}{\lambda} \sin \theta)}{\sin(\frac{\pi d}{\lambda} \sin \theta)} \right)
\]

where \(d \) is distance span of two electret cell elements, \(\lambda \) is wave length. Assume there are \(N \) elements of the array.
Simulation of Electret cell at 1st resonance

Structure

Acoustic

NTU Nano-BioMEMS Group
Directivity of the electret loudspeaker
(10cm x 10cm)

at 1k Hz
Directivity of a electret loudspeaker
(10cm x 10cm)

at 4k Hz

at 8k Hz
Directivity influenced by size of array
Directivity influenced by weighting function

\[b(\theta) \equiv \left\{ \frac{\sum_{m=0}^{N-1} C_m \cdot \alpha_m e^{i(k \cdot m \cdot d \cdot \sin \theta + \delta_m)}}{\sum_{m=0}^{N-1} C_m \cdot \alpha_m e^{i\delta_m}} \right\}^2 \]

\[= \left\{ \frac{\sum_{m=0}^{N-1} C_m \cdot e^{i k \cdot m \cdot d \cdot \sin \theta}}{\sum_{m=0}^{N-1} C_m} \right\}^2 \]

Ex. binomial shading

\[C_m = \frac{1}{10} \{1, 5, 10, 10, 5, 1\} \]

NTU Nano-BioMEMS Group

Schematic of two clusters of structures
Directivity influenced by structure of array

結構 聲場 指向性

Simulations at 1kHz
Experiment at 1kHz

NTU Nano-BioMEMS Group
4. 結論
4. CONCLUSIONS

- Built the FEA model of the electret Cell Actuator by COMSOL.
- Validated the FEA model by using AVID and ESPI measurement system
- Built the FEA model of the electret loudspeaker by COMSOL.
- Validated the FEA model by using acoustic measurement system
Thank you for your attention