COMSOL Multiphysics in Plasmonics and Metamaterials

Shulin Sun¹,² (孫樹林), Guang-yu Guo²,³ (郭光宇)

¹Physics Division, National Center for Theoretical Sciences (North), National Taiwan University, Taipei 10617, Taiwan
²Department of Physics, National Taiwan University, Taipei 10617, Taiwan
³Graduate Institute of Applied Physics, National Chengchi University, Taipei 11605, Taiwan.

Email: slsun@phys.ntu.edu.tw
Outlook

- Introduction;
- Our works:
 - Effective-medium properties of metamaterials: A quasi-mode theory;
 - 2D complete band gaps from 1D photonic crystal;
 - Optical microcavities;
- Conclusions.
User history of COMSOL Multiphysics

2008 Shanghai

2009 Shanghai

2010 Taipei
VIP Customer

- COMSOL Multiphysics 3.5a, Fudan
- COMSOL Multiphysics 4.2a, NTU
• AC/DC Module
• Acoustics Module
• Chemical Engineering Module
• Earth Science Module
• Heat Transfer Module
• MEMS Module
• **RF Module**
• Structural Mechanics Module
The rules obeyed by electromagnetic waves

\[\nabla \cdot \vec{E} = \rho / \varepsilon \]
\[\nabla \times \vec{E} = -\mu \frac{\partial}{\partial t} \vec{H} \]
\[\nabla \cdot \vec{H} = 0 \]
\[\nabla \times \vec{H} = j + \varepsilon \frac{\partial}{\partial t} \vec{E} \]

Maxwell equations

Metal

Air, water, glass

Some ferromagnetic, anti-ferromagnetic materials

\[\mu \]

\[\varepsilon \]

V.G. Veselago
Negative refraction

Negative Refraction

Super Lens
Experimental demonstration

Electric atom

-\varepsilon

PRL 76, 4773 (1996)

Magnetic atom

-\mu

First experimental verification of negative refraction

Science 292, 77(2001)

J. B. Pendry

D. R. Smith
Simulation and Experiments

EM Cloaking

Science 314,997 (2006)

Plasmonic Luneburg Lens

Nano Lett. 10, 1991 (2010)

Negative refraction in PC

PRL 97,073905(2006)

- **FEM Simulation** is a powerful tool to design the metamaterial and investigate its properties.
Comparison of FEM and FDTD

Conclusion: FEM has more freedom of mesh setup to define the complex structure more accurately.
Outlook

- Introduction;
- Our works:
 - Effective-medium properties of metamaterials: A quasi-mode theory;
 - 2D complete band gaps from 1D photonic crystal;
 - Optical microcavities;
- Conclusions.
Section I

Effective-medium properties of metamaterials:
A quasi-mode theory

[1] How to determine effective-medium properties;

\[n_{\text{eff}} = \frac{1}{kd} \cos^{-1} \left(\frac{1}{2t} \left[1 - (r^2 - t^2) \right] \right) + \frac{2\pi m}{kd} \]

\[z_{\text{eff}} = \pm \sqrt{\frac{(1 + r)^2 - t^2}{(1 - r)^2 - t^2}} \]

\[n = \sqrt{\varepsilon} \sqrt{\mu}; z = \frac{\sqrt{\mu}}{\sqrt{\varepsilon}} \]

\[\varepsilon_{\text{eff}} = \frac{n_{\text{eff}}}{z_{\text{eff}}}, \mu_{\text{eff}} = n_{\text{eff}} z_{\text{eff}} \]

S-Parameter Retrieval Method

[PRB, 65, 195103 (2002)]
[2] Problems in traditional effective-medium method

\[n_{\text{eff}} = \frac{1}{kd} \cos^{-1}\left(\frac{1}{2t} \left[1 - \left(r^2 - t^2 \right) \right] \right) + \frac{2\pi m}{kd} \]

\[z_{\text{eff}} = \pm \sqrt{\frac{(1+r)^2 - t^2}{(1-r)^2 - t^2}} \]

Effective medium changes while unit cell increases
PRB 77, 035126 (2008)

Strong coupling system
PNFA 6,96 (2008)
Quasi-mode Method to determine effective EM properties

Meta-materials

Vary $\varepsilon_{\text{ref}}, \mu_{\text{ref}}$ \quad \Rightarrow \quad \text{Scattering loss self-energy} \quad \Rightarrow \quad 0

$\varepsilon_{\text{eff}} = \varepsilon_{\text{ref}}$

$\mu_{\text{eff}} = \mu_{\text{ref}}$

Simulation setup

Cross section of wire: 0.2mm × 0.5mm (y × z)
Lattice constant: 16mm × 6mm × 7.5mm (x × y × z)
Effective medium properties of metallic wire

At a single frequency we tune ε_{ref} and μ_{ref} to search the highest DOS and determine the effective EM properties.

$\varepsilon_{\text{ref}} = 2.793, \mu_{\text{ref}} = 0.906$
Dispersion of effective permittivity ε_{eff}

- Peaks of DOS broaden and decrease while frequency increases.
- It means uncertainty range of effective parameters is more and more large that effective medium description gradually breaks down.
I try to seek the simulation method for about half a year.
As far as I know, comsol is the only commercial software which can solve my problem.

Section II

2D complete gaps from 1D photonic crystal

3D Complete Photonic Band Gap (PBG)

\[\varepsilon_1 = 1, \mu_1 = 1, \varepsilon_2 = -6, \mu_2 = -1.38, d_1 = 1.5\lambda / 2\pi, d_2 = 1.4\lambda / 2\pi \]

Complete band gaps can never be realized in 1D right-handed periodic structures.

\[\varepsilon_2 = \mu_3 = -6, \mu_2 = \varepsilon_3 = -1.38, d_2 = d_3 = 0.7\lambda / 2\pi \]

Ilya V. Shadrivov et. al., PRL 95, 195903 (2005)
Whether we can confine the light in two or three dimensional space using a one dimensional system?

Green Function

Comsol Simulation

S.L. Sun et. al., PRE 53,066602 (2007)
Kivshar et al, PRL 95,195903(2005)
Section III

Optical Microcavities

Ref: Hongxing Dong, et al., Appl. Phys. Lett. 97, 223114 (2010);
Optical Microcavity

Fabry-Pérot microcavity

Whispering gallery microcavity

Other kinds of Microcavities

Peidong Yang, et al., Science 292, 1897 (2001)

Plasmonic Laser

- The first experimental demonstration of plasmon laser.
- Small size, hybrid plasmonic waveguide, low loss;

Introduction of ZnO Nanowire

WGM of photon

\[6R_i = \frac{hc}{nE} \left[N + \frac{6}{\pi} \arctan(\beta \sqrt{3n^2 - 4}) \right] \]

WGM of exciton polariton

Indium oxide octahedra optical microcavities

vapor-phase transport method

Indium and oxygen vapor as source materials

Reaction temperature 950 °C

\[\text{N}_2 \rightarrow \text{O}_2 \rightarrow \text{N}_2 \rightarrow \text{In}_2\text{O}_3 \]

\[950^\circ \text{C} \]

\[\text{In}_2\text{O}_3 \text{ octahedra are very regular and nearly perfect in shape with sizes ranging from 0.5 to 2.5 } \mu\text{m} \]

Single-crystalline with BCC lattice

The SEM, TEM and SAED of In\textsubscript{2}O\textsubscript{3} octahedrons

\[\langle 110 \rangle, \langle 100 \rangle, \langle 111 \rangle \]
Because of this confocal configuration, the spatial resolution can be up to sub-micrometer
The photoluminescence (PL) spectrum

Bow-tie like model

an angle of incidence of 35°

Plane wave model

Cauchy dispersion formula

The factor β depends on polarization, for TM mode (the electrical component of light $E \perp$ rhombic cross section), $\beta=n^{-1}$ and for TE mode ($E \parallel$ rhombic cross section), $\beta=n$.

$n_\parallel = 1.81 + \frac{7.16 \times 10^4}{\lambda^2}$
Numerical Simulation

- All the modes observed experimentally are identified by FEM simulated spectrum.
Conclusions

- COMSOL Multiphysics is a powerful and necessary simulation tools for me.
- COMSOL Multiphysics offers many freedoms for the postprocessing.
- COMSOL Multiphysics has powerful connection with other softwares-Matlab, Autocad, etc.
Acknowledgement

- Lei Zhou (Fudan University);

- Zhanghai Chen, Liaoxin Sun, Hongxing Dong (Fudan University);

- Din-ping Tsai, Kuang-Yu Yang, Wei-Ting Chen (NTU);

- Engineers of PITO Tech., Cntech.

許坤霖, 崔春山, ****