Numerical study of exciton states of core-shell CdTe/CdS nanotetrapods by using COMSOL Multiphysics

Yuanzhao YAO, Kazuaki SAKODA

Quantum Dot Research Center, National Institute for Materials Science

Graduate School of Pure and Applied Sciences, University of Tsukuba

Excerpt from the Proceedings of the 2011 COMSOL Conference in Tokyo
Colloidal quantum dots (QDs)

Five different QD solutions are shown excited with the same long-wavelength UV lamp; the size of the nanocrystal determines the color. (from HP of “invitrogen”)

Colloidal QDs are synthesized from precursor compounds dissolved in solutions. (Chemical processes)
Application of colloidal QD

- Infrared detector, sensor
- QD electroluminescence device
- Solar cell
- Luminescent marker

CdSe QDs are injected into a mouse, and fluoresce under UV-light. Mark the location of cancer tumour. (from National Geographic)

Colloidal QD light-emitting device pixels
P.O. Anikeeva, et al.
(Nano Lett., 9, 2532, 2009)
Shape control of colloidal QD

Spherical QD nanorod nanotetrapod

Proposed model of a CdTe tetrapod

CdTe/CdS core-shell tetrapods

- With continuously grown CdS shell on CdTe tetrapod, features of type II heterostructures were observed in experiment, e.g. featureless absorption tail @ $t=1.2$ nm
- Study the influence of CdS shell on the exciton state, consequently the optical properties of core-shell tetrapod

Cross-section of one branch

CdTe(ZB) Core
CdTe(WZ) Arm
CdS shell t

$t=$CdS shell thickness

Theoretical model

(1) **Single particle Schrodinger equation** (Effective-mass approximation)
Solved with finite element method by using **COMSOL software**

\[\Psi_i(r_i) = \varphi_i(r_i)u_i(r_i) \quad i = \text{e or h} \]

\[\varphi_i \] is the envelope function and \(u_i \) is the atomic wave function

\[H_i(r_i)\varphi_i(r_i) = \left\{ -\frac{\hbar^2 \Delta_i}{2m_i^*} + V_i(r_i) \right\} \varphi_i(r_i) = E_i\varphi_i(r_i) \]

Consider the lowest 20 electron and 20 hole states, whose wave functions only have \[\text{A1} \] or \[\text{T2} \] symmetry

(2) **Two-body Schrodinger equation**
Solved with configuration interaction method

\[\Psi(r_e, r_h) = \sum_{i,j} a_{i,j} \varphi_e^{(i)}(r_e)\varphi_h^{(j)}(r_h), \]

\[\left(H_e + H_h - \frac{e^2}{4\pi\varepsilon_0\varepsilon |r_e - r_h|} \right) \Psi(r_e, r_h) = E_X\Psi(r_e, r_h) \]

Same method as: **K. Sakoda et al., Opt. Mat. Express 1, 379 (2011).**
Lowest electron state(e1) and highest hole state(h1) wave function distribution

t=0 (nm) t=0.1 t=0.2 t=0.3 t=0.6 t=0.9 t=1.2
Single-particle state e1&h1 overlap integral

Overlap integral

Shell thickness (nm)

e-h NOT totally separated

type II heterostructure NOT apparent
Shell thickness dependence of exciton energy with A1 and T2 symmetry

[Graph showing exciton energy (eV) vs. shell thickness (nm) with different symmetries A1, T2-1, T2-2, T2-3.]
Analytical calculation (1)

Constructed electron wave function, combination of 4 independent wave function on each branch

\[\psi_{A1} = \frac{1}{2} (\phi_1 + \phi_2 + \phi_3 + \phi_4), \]
\[\psi_{T2}^{(1)} = \frac{1}{2} (\phi_1 + \phi_2 - \phi_3 - \phi_4), \]
\[\psi_{T2}^{(2)} = \frac{1}{2} (\phi_1 - \phi_2 + \phi_3 - \phi_4), \]
\[\psi_{T2}^{(3)} = \frac{1}{2} (\phi_1 - \phi_2 - \phi_3 + \phi_4), \]

Two-body matrix element

\[\langle k\ell|H_2|ij\rangle = \langle kj|H_2|il\rangle - 2\langle jk|H_2|il\rangle, \]

In which matrix element

\[\langle kj|H_2|il\rangle = - \int dr_1dr_2 \psi_h^{(j)*}(r_2)\psi_e^{(k)*}(r_1) \]

\[\times \frac{e^2}{\epsilon_0\epsilon|r_1 - r_2|} \psi_e^{(i)}(r_1)\psi_h^{(l)}(r_2) \]

@ \textbf{t=1.2 nm}, the order of lowest 4 exciton states NOT change.

Safe to choose only lowest 4 pair states for analytical calculation. (e1h1, e2h1, e3h1, e4h1)
Analytical calculation (2)

Diagonal matrix element

(A) Coulomb integral
same value for 4 diagonal elements

(B) exchange interaction integral (e1h1)

\[-2\langle j i | H_2 | i j \rangle = 2 \int d\mathbf{r}_1 d\mathbf{r}_2 \frac{e_0^2}{2\epsilon_0 |\mathbf{r}_1 - \mathbf{r}_2|} \]
\[\times [\phi_1(r_1) + \phi_2(r_1) + \phi_3(r_1) + \phi_4(r_1)] \varphi_{h1}(r_1)\]
\[\times [\phi_1(r_2) + \phi_2(r_2) + \phi_3(r_2) + \phi_4(r_2)] \varphi_{h1}(r_2)\]

Off-diagonal matrix element

(A) direct Coulomb integral
All off-diagonal elements for direct Coulomb integral are zero

(B) exchange interaction integral
All off-diagonal elements for exchange interaction integral are zero

Conclusion of analytical calculation:
The symmetry of lowest exciton state (t=1.2 nm) is T2
Symmetry break in core-shell tetrapod

For the imperfect cs-tetrapod, oscillator strength of the lowest-energy exciton state is NOT zero

Modification: one Arm with thicker shell

Modification: one thicker arm
Conclusion

- The electronic states of core-shell tetrapod with various shell thickness are calculated. Lowest 20 electron and hole wave functions have A1 or T2 symmetry.
- At \(t=1.2 \) nm, the carriers separation is not serious, core-shell tetrapod is not apparent type II heterostructure.
- Exciton states were investigated as a function of \(t \). For large \(t \), the lowest exciton state has T2 symmetry, which implies nonluminescence in emission spectrum.
- Core-shell tetrapod with broken symmetry shows non-zero oscillator strength for lowest exciton state.

Thank you for your attention!