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Modeling and Simulation Study of a Fixed-Bed Catalytic Reactor for 
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The objective of this work is to develop multiple simulation models for the CO2 hydrogenation reaction using COMSOL Multiphysics®
software. These models utilize the Chemical Reaction Engineering Module and its associated interfaces to simulate the CO2
hydrogenation process within a fixed-bed reactor employing a 10% Ni/alumina catalyst.
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Methodology

The methanation is a highly exothermic and reversible reaction.
Thus, efficient heat management of the reactor is necessary to
avoid hot spots and maximize CH4 production at the reactor
outlet 1. The use of simulation software can be a very useful
tool to assist the design of efficient reactors 2.
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IMPORTANT: Inlet boundary conditions

Transport of Concentrated Species in Porous Media

Heat Transfer in Porous Media
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Results and Discussion 

It is analyzed the impact of mass and heat
transport in the longitudinal axis of a reactor,
comparing it to ideal zero-dimensional
models.
Inclusion of heat transfer caused significant
changes in CO2 conversion and temperature
profiles, shifting the hot spot towards the
reactor entrance and raising temperatures to
522 °C at the entrance.
Mass transport, to a minor extent, also
influenced these profiles, making them
smoother due to back mixing effects.

In the radial direction, velocity gradients are absent, while
CO2 conversion and temperature gradients are observable.
The reactor walls act as a refrigeration source, causing the
gas mixture to be cooler near the reactor wall compared to
the axial coordinate. This temperature distribution affects
thermodynamics, promoting higher CO2 conversion near
the reactor wall and decreasing conversion towards the
axial coordinate of the reactor.
Incorporating a porous medium within the reactor
significantly enhances heat transport, primarily due to the
higher conduction coefficient of the solid. This alteration
results in a further shift of the hot spot towards the reactor
entrance, with temperatures reaching 649 °C at the
entrance. Also, the hot spot is reduced to 660 °C.
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Conclusions
COMSOL® has demonstrated its effectiveness as a simulation tool. Future work will involve implementing reactor models that consider catalysts, 
enabling the analysis of mass and heat transfer resistances between fluid and solid phases. Furthermore, temporal studies will be conducted to 
understand how the reactor responds to variations in hydrogen flow rates, which are contingent on the availability of renewable energy surplus.
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