Simulation of radiation dose response in phantom for CT

H. Heather Chen-Mayer, Ronald E. Tosh National Institute of Standards and Technology, Gaithersburg, MD 20896, USA

Excerpt from the Proceedings of the 2012 COMSOL Conference in Boston

Radiation dosimetry

- Photon interactions
 - Photoelectric absorption, coherent and incoherent scattering
 - secondary electron equilibrium
- Dose (energy Gy = J/kg)
 - Air kerma: "kinetic energy of all charged particles liberated per unit mass"
 - absorbed dose: "energy absorbed per unit mass"
 - Absorbed dose to water: tissue equivalent, homogeneous
- Two primary methods to provide dosimetry standard:
 - Measuring charge: Ionization chamber
 - ✓ simulation: Monte Carlo photon and electron transport
 - Measuring heat, temperature rise in medium: Water calorimetry
 - ✓ Simulation: Comsol

ENERGY RANGES & QUANTITIES

10-50 keV – low energy x-rays	Air Kerma
50-300 keV – medium energy x-rays	Air Kerma
Cs-137 & Co-60	Air Kerma
Co-60	Absorbed Dose
Linac photon (x-ray) beams	Absorbed Dose
Linac electron beams	Absorbed Dose

Collect charge in ionization chamber

$$K_{air} = \frac{Q_{air}}{\rho_{air} \cdot V} \cdot \left(\frac{W}{e}\right)_{air} \cdot \frac{l}{l - g} \cdot K_{att} \cdot K_{sc} \cdot K_{e} \cdot K_{hum} \cdot P_{pol} \cdot P_{ion}$$

http://www.aapm.org/meetings/09SS/documents/15McEwen-PrimaryStandardsfinalforVL.pdf

Static 10 cm x 10 cm beam

Measure temperature rise to determine dose

$$D = c_p \Delta T$$

1 Gy of radiation -> temperature rise in water 0.24 mK

Comsol simulation of a water calorimeter

CT dose

- On the order of mGy, therapy level Gy
- Non-static beam, a few s rotation time

Current CT dose standard – $CTDI_{100}$

16 cm head PMMA phantom

Various conversion steps:

$$CTDI_{100} = \frac{1}{nT} \int_{-50mm}^{50mm} D_a(z) dz$$

$$D_{material} \approx K_a \left(\overline{\mu}_{en} / \rho \right)_{air}^{material} \approx q N_k \left(\overline{\mu}_{en} / \rho \right)_{air}^{material}$$

a) 10 cm chamber, b) 0.6 cc chamber, c) RTI dose profiler

Measurement in CT

Calorimetry – direct realization of the dose

Photo of PE phantom with electrical wiring for thermistors

Ionization chamber

CT projection image showing on axis arrangement of an ionization chamber and the pair of thermistors.

HDPE vs water

 $D = c_p \Delta T \qquad \partial T / \partial t = D/c_p + B \partial^2 T / \partial x^2$

- High density polyethylene has a heat capacity about 2.5 times lower and thermal conductivity of 30% lower than water.
- The temperature sensitivity of Wheatstone/lock-in device is about 3 μK
- 1 Gy of radiation
 - temperature rise in water 0.24 mK
 - temperature rise in PE is about 0.6 mK
- A typical CT scan delivers a dose of 10s of mGy
 - 2.4 μ K in water
 - 6 μK in PE.

Measurements were performed in a 16-slice medical CT scanner at 120 kVp. For the purpose of this study, an elevated dose is delivered by using twenty consecutive axial scans at 250 mA, which delivers a nominal total dose of 705 mGy in 50 s.

CT dose to HDPE phantom using calorimetry – A feasibility study H. Chen-Mayer R. Tosh F. Bateman B. Zimmerman AAPM 2012

 $\rho C_p \frac{\partial T}{\partial t} - \nabla \cdot (k \nabla T) = Q$ $Q = Q_0 e^{-ar+b} \left(1 + \sin 2\pi t/\tau\right) \left(z_{min} < z < z_{max}\right)$

Need to do: Heat defect not yet accounted for, could be as high as 10% Photon/electron transport for the radiation profile

Work in progress