Modeling of pulsed Laser Thermal Annealing for junction formation optimization and process control

R. Negru, K. Huet, P. Ceccato, B. Godard

EXCICO, 14 rue Alexandre, 92230 Genneviliers, France

http://www.excico.com
OUTLINE

- Laser Thermal Annealing technology
- Experiments
- Model
 - Phase-Field approach
 - Dopant diffusion and segregation
- Results
- Conclusions
OUTLINE

- Laser Thermal Annealing technology
- Experiments
- Model
 - Phase-Field approach
 - Dopant diffusion and segregation
- Results
- Conclusions
Pulsed excimer Laser Thermal Annealing (LTA)

- Laser absorption
- Melting and recrystallization

Low thermal budget process

- High temperature localized in space and time
 - Shallow depth effect (<µm)
 - Ultrafast (<µs)
Laser tool characteristics

- **High Energy Gas laser**
 - XeCl excimer gas
 - UV 308nm wavelength
 - Pulsed

- **Challenge:** process variability
 - Energy and pulse variations
Laser Thermal Annealing Process Parameters

- **Long pulse laser**
 - Pulse Duration: ~150 ns

- **Uniform high Energy Density**
 - Up to 3 J/cm²
 - Up to 2x2 cm² area
Process variability and junction formation

- **Other laser annealing process parameters**
 - Melt Depth (ex-situ measurement)
 - Temperature (no direct measurement)

- **Depend on**
 - Laser **Energy Density**
 - Pulse shape

→ **LTA process simulation**
 - Linking tool parameters to process
 - Understanding process variability
LTA simulation: 2 steps

Thermal step
- Laser parameters
- Structure
 - Material properties
 - Geometric dimensions
- Process Window determination to avoid damage
 - Temperature profiles
 - Melt dynamics

Diffusion step
- Temperature profiles & Melt dynamics
- Junction formation
 - Dopant distribution
- Dopant profiles
OUTLINE

- Laser Thermal Annealing technology
- Experiments
- Model
 - Phase-Field approach
 - Dopant diffusion and segregation
- Results
- Conclusions
Typical Boron profiles after LTA

- Melt Depth estimation vs Energy Density
- Profiles not explained by simple diffusion (Fickian)

Secondary Ion Mass Spectroscopy (SIMS) error:
±5% in depth and ±10 in concentration
OUTLINE

- Laser Thermal Annealing technology
- Experiments
- Model
 - Phase-Field approach
 - Dopant diffusion and segregation
- Results
- Conclusions
Phase-Field model

- Heat (T) and Phase (\(\varphi\)) equations are connected by coupling terms
- Formalism: \(-1 \leq \varphi \leq +1\)

\[\text{Heat equation} \]
\[\rho \cdot c_p \cdot \frac{\partial T}{\partial t} - \nabla^2 (k \cdot T) = \rho \cdot \frac{L_{fus}}{2} \cdot \frac{15}{8} \cdot (\varphi^2 - 1)^2 \cdot \frac{\partial \varphi}{\partial t} + S(x, t) \]

- Source equation
\[S(x, t) = ED \cdot P_n(t) \cdot (1 - R) \cdot \alpha \cdot e^{-\alpha \cdot x} \]

- Phase change equation
\[\tau \cdot \frac{\partial \varphi}{\partial t} = W^2 \cdot \nabla^2 \varphi - \varphi \cdot (\varphi^2 - 1) - \frac{\lambda}{L_{fus}} \cdot (T - T_M) \cdot (\varphi^2 - 1)^2 \]

[Karma and Rappel, PRE 1998] [La Magna et al., JAP 2004]
Dopant distribution simulation

\[\frac{\partial C_B}{\partial t} = \nabla \left(D_B \nabla C_B \right) - \nabla \left(D_B \frac{C_B}{C_{equ}} \nabla C_{equ} \right) \]

Fickian diffusion
Adsorption and segregation

- With
 - \(C_B \): Boron concentration (cm\(^{-3}\))
 - \(D_B \): Boron diffusion coefficient (cm\(^2\)s\(^{-1}\), phase dependent)
 - \(C_{equ} \): Equilibrium concentration (fit parameter)

OUTLINE

- Laser Thermal Annealing technology
- Experiments
- Model
 - Phase-Field approach
 - Dopant diffusion and segregation
- Results
- Conclusions
Thermal and phase change simulation

- Model fit very well the experimental data
 - Accuracy: $R^2 > 95\%$
Dopant distribution simulation

- Good simulation of LTA junction formation
- Good agreement between simulation and experience
- Model accuracy: $R^2 > 90\%$
OUTLINE

- Laser Thermal Annealing technology
- Experiments
- Model
 - Phase-Field approach
 - Dopant diffusion and segregation
- Results
- Conclusions
CONCLUSIONS

- **Objective**
 - Linking tool parameters to process
 - Model validation

- **Conclusions**
 - Good agreement between model and experiences in case of LTA time shift
 - Melt Depth
 - Good simulation of LTA junction formation
 - Diffusion & segregation

- **Perspectives**
 - Tool for process integration
 - Extend to other dopants
THANK YOU FOR YOUR THE ATTENTION !