Geometric Optimization of Piezoelectric Energy Harvesting System

Rana N. Badran and Hani A. Ghali

Faculty of Electrical Engineering,
The British University in Egypt (BUE)

INTRODUCTION: WHAT IS ENERGY HARVESTING?

- The process of converting available ambient energy into usable electrical energy through the use of certain materials.
- Materials used for energy harvesting are able to:
- Convert mechanical energy to Electrical energy
- Convert temperature gradients to electrical energy.

- Convert solar energy to electrical energy

INTRODUCTION (CONT.) PIEZOELECTRIC ENERGY HARVESTING

- The most versatile technique for vibrational energy harvesting is using piezoelectric materials.

Advantages

- Virtually inexhaustible energy source
- No adverse environmental effect
- Simple transduction mechanism
- Relatively easy to implement in different applications in comparison to other harvesting techniques

Disadvantages

- Harvested power is in the order of a few tens of micro-milli watts
- Harvested power tends to be unregulated and unpredicted
- Optimization techniques are necessary
- The device needs to be excited at certain frequencies

INTRODUCTION (CONT.) PIEZOELECTRICITY

- Piezoelectric materials generate electric charges when exposed to stresses or strains, the effect is called "piezoelectricity"
- The phenomenon of piezoelectricity was discovered by brothers Pierre and Jacques Curie in 1880 .
- When bending a piezoelectric cantilever upwards, a positive electrical potential voltage is generated. However, when the cantilever is bent downwards an electrical potential of the opposite polarity is generated.
- The effect is due to the coupling of both mechanical and electrical fields.

OBJECTIVE \& CONTRIBUTION

- The objective of this paper is to is to study the effect of geometrical optimization of an array configuration for a unimorph piezoelectric cantilever element. Steps for achieving this are:

1) Connect a previously optimized cantilever in a two-element and a three element array to increase energy conversion efficiency
2) Optimize the element spacing for the array configuration for maximum output

- The device will be simulated in 3D configuration using COMSOL Multiphysics.
- Most publications were concerned with the optimization of the harvesting circuits mounted on the piezoelectric harvesters. However; little interest has been given to optimizing the actual design of the piezoelectric device.

ARRAY CONFIGURATION FOR A PIEZOELECTRIC ENERGY HARVESTER

- Two array configurations are going to be simulated.
- The first is a mechanical series connection of two identical elements
- The second is a mechanical series connection of three identical elements.
- Single elements are a unimorph cantilever, with two layers. The bottom steel layer is 0.2 mm thick.
- Length and width will remain constant through out the simulation Piezoelectric layer thickness is the optimized value of 0.1 mm .
- The element spacing is going to varied from $0.5-2 \mathrm{~mm}$ to find the optimum value.

COMSOL Model:

OPTIMIZATION OF PIEZOELECTRIC ENERGY HARVESTER

Settings to calculate the charge

 output- customizable variable D is defined on the top boundary of the piezoelectric layer, to measure the electrical displacement of the cantilever ($\mathrm{C} / \mathrm{m}^{2}$)

$$
\begin{gathered}
D=d T+\varepsilon_{T} E=\frac{q}{A}\left(C / m^{2}\right) \\
q=\iint_{S} D d A
\end{gathered}
$$

- D:The electrical displacement ($\mathrm{C} / \mathrm{m}^{2}$)
- q :The amount of electric charge.
- A :The surface area in m^{2}

Settings to calculate the open circuit voltage

- A global variable is set on one point on the piezoelectric layer to calculate the open circuit voltage.

$$
V=\frac{q}{C}(V)
$$

- $q=$ Accumulated charge on piezoelectric terminal (C)
- C = Capacitance of piezoelectric device ($\mu \mathrm{F}$)

ARRAY CONFIGURATION FOR A PIEZOELECTRIC ENERGY HARVESTER

Setting Boundary Conditions \& Applying Mesh

Two-Element Array

- Same boundary condition as that of the previously optimized cantilever except:
- Mesh elements along the width is doubled.
- Body load is $I / 2$ that of the original ($150 \mathrm{~N} / \mathrm{m}^{3}$), since the volume is almost doubled

Three-Element Array

- Same boundary condition as that of the previously optimized cantilever except:
- Mesh elements along the width is tripled.
- Body load is $I / 3$ that of the original ($100 \mathrm{~N} / \mathrm{m}^{3}$), since the volume is almost tripled.

ARRAY CONFIGURATION FOR A PIEZOELECTRIC ENERGY HARVESTER

Eignfrequency Analysis
Two-Element Array

298.3 Hz

302.8 Hz

I 845.3 Hz
298.6 Hz

306.4 Hz

Three-Element Array

I 893.4 Hz
308.4 Hz

1925.2 Hz

SIMULATION RESULTS

Results when exciting at fundamental resonance frequency

Output Voltage vs. Element Spacing

Output Charge vs. Element Spacing

CONCLUSION

- For the array configuration the optimum element spacing is 0.5 mm .
- When simulating at optimum element spacing and at the fundamental resonance frequency, the output charge, voltage and the stored energy are greatly optimized.

Charge,Voltage and Max.Tip Displacement

CONCLUSION (CONT.)

- The total stored energy increases with the number of elements
- Results are much higher than those obtained when simulating the single unimorph cantilever. The total energy stored was increased to more than 30 times for the two-element array and to more than 1800 times for the three element array (in comparison to a single element).

	Single Element	Two Element Array	Three Element Array
Total Stored Energy	0.04716 fJ	1.54 fJ	854.5 fJ

Questions?

Thank you!

