Ribbon Formation in Twist-Nematic Elastomers

L. Teresi, V. Varano

LaMS - Modeling & Simulation Lab,
Università Roma Tre, Italy

COMSOL Conference Europe 2012, Milan, Italy
October, 10 ~ 12, 2012

Excerpt from the Proceedings of the 2012 COMSOL Conference in Milan
1. Helicoid to Ribbon

1.1 Formation of twisted ribbons consisting of bilayers of gemini surfactants (two surfactant molecules covalently linked at their charged head groups; here 16-2-16 tartrate at 0.1% in water; horizontal span ~ 10 μm).

1.2 It is observed a smooth transition from **platelet to helix to ribbon** (tubule in the picture)

![Diagram of Tubule, Helix A, Platelet, Helix B](image)

1.3 How does the shape of the twisted ribbons arise from the particular molecular structure of the amphiphiles?

1.4 This is a long lasting story ...

W. Helfrich, J. Prost.
Intrinsic bending force in anisotropic membranes made of chiral molecules.

Tuning bilayer twist using chiral counterions.

R. Ghafouri, R. Bruinsma.
Helicoid to Spiral Ribbon Transition.

E. Efrati, E. Sharon, R.Kupferman.
Buckling transition and boundary layer in non-Euclidean plates.

Y. Sawaa, F. Ye, K. Urayama, T. Takigawa, V. Gimenez-Pinto, R.L.B. Selinger, J.V. Selinger,
Shape selection of twist-nematic-elastomer ribbons.
1.5 ... and here is what happens to Twist-Nematic Elastomers

Y. Sawaa, F. Ye, K. Urayama, T. Takigawa, V. Gimenez-Pinto, R.L.B. Selinger, J.V. Selinger,
Shape selection of twist-nematic-elastomer ribbons.
2. Nematic Elastomers

2.1 Nematic elastomers exhibit large distortions of a special kind: if the stress-free shape of a mesoscopic chunk of NE is a spherical ball when the appended mesogens are in the disordered, isotropic phase (left), its stress-free shape in the ordered, nematic phase is a spheroid whose polar axis is aligned with the prevailing mesogen direction (right).
3. Isotropic-nematic Phase Transitions

3.1 Nematic direction is represented by

\[\mathbf{N} = \mathbf{n} \otimes \mathbf{n}, \quad \text{with } \mathbf{n} \text{ a unit vector, called director} \]

3.2 Nematic distortions are then represented by the tensor

\[\mathbf{U}_o = \lambda_\parallel \mathbf{N} + \lambda_\perp (\mathbf{I} - \mathbf{N}), \quad \lambda_\perp = \sqrt{\frac{J_o}{\lambda_\parallel}}, \quad J_o = \det (\mathbf{U}_o) \]

Phase diagram of a typical NE: strains versus temperature \((J_o = 1)\).
4. Elastic Strain

4.1 Given a volume element dV, the elastic deformation F_e measures the difference between its distorted image $dv_o = U_o dV$ and its actual state $dv = F dV$.

$$dv = F dV = F_e dv_o$$

$F_e = F U_o^{-1}$

this is the “further strain”

4.2 The elastic energy φ has to be a function of the elastic strain $C_e = F_e^T F_e$:

5. Preparation

5.1 Specimens are prepared in the nematic & wet state, and are initially flat. The nematic configuration is imprinted in the elastomer matrix by the cross-linking reaction in the presence of a nonreactive dopant, and appropriate glass substrates coated with uniaxially rubbed layer.

5.2 The specimen undergoes an anisotropic de-swelling (irreversible) and a temperature-controlled nematic-to-isotropic phase transition (reversible)

\[
\text{de-swelling} \quad \to \quad \text{heating} \quad \to \quad \text{isotropic state}
\]

\[
\begin{align*}
\sim 50\% \, \text{volume reduction} & \quad v = v_\text{d}, \vartheta = \vartheta_p \\
\text{preparation state} & \quad v = 1, \vartheta = \vartheta_p
\end{align*}
\]

5.3 Nematic distortions are then represented by the tensor

\[
U_o = \frac{\lambda_{\parallel}(\vartheta) \alpha_{\parallel}(v)}{\lambda_{\parallel}(\vartheta_p)} N + \frac{\lambda_{\perp}(\vartheta) \alpha_{\perp}(v)}{\lambda_{\perp}(\vartheta_p)} (I - N).
\]
5.4 Nematic-isotropic transition is volume preserving, de-swelling is not:
\[
\lambda_{\parallel}(\vartheta) \lambda_{\perp}^2(\vartheta) = 1, \quad \alpha_{\parallel}(v) \alpha_{\perp}^2(v) = v.
\]

5.5 Let us have a look at the resultant strains:
\[
\lambda_{\parallel}(\vartheta, v) = \frac{\lambda_{\parallel}(\vartheta) \alpha_{\parallel}(v_d)}{\lambda_{\parallel}(\vartheta_p)}, \quad \lambda_{\perp}(\vartheta, v) = \frac{\lambda_{\perp}(\vartheta) \alpha_{\perp}(v_d)}{\lambda_{\perp}(\vartheta_p)}.
\]
6. Chiral

6.1 Chiral geometry: N is on horizontal planes

\[\theta = \theta(z) \]
\[n(\theta) = \cos(\theta) e_1 + \sin(\theta) e_2 \]
\[N(\theta) = n(\theta) \otimes n(\theta) \]
\[U_o(\theta) = \lambda_\parallel N(\theta) + \lambda_\perp (I - N(\theta)) \]
\[C_o(\theta) = \lambda_\parallel^2 N(\theta) + \lambda_\perp^2 (I - N(\theta)) \]

6.2 What is the realized configuration?
6.3 The elastic strain must accommodate non-homogeneous and non isotropic distortions; we study two chiral geometries:

L-geom:
at midplane director \parallel axis

S-geom:
at midplane director \perp axis

6.4 There are two strategies: twist or bend; the transition from one shape to the other is sharp.
7. L- & S-Geometry

7.1 The handedness is determined by the torsion b_{o12}:

$$b_{o12} > 0 \Rightarrow \text{right-handed};$$

$$b_{o12} < 0 \Rightarrow \text{left-handed.}$$

$$b_{o12} = \begin{cases} \frac{1}{2} (\lambda^2_\parallel - \lambda^2_\perp) & \text{L-geometry;} \\ \frac{1}{2} (\lambda^2_\perp - \lambda^2_\parallel) & \text{S-geometry.} \end{cases}$$

![Graph showing the transition between different states and geometries with respect to torsion b_{o12}](graph.png)
7.2 Helicoid to Ribbon

\[\nabla \] smooth transition

\[\nabla \] buckling

8. Shape Formation

8.1 Shape transition is dependent on the ratio:

\[
\frac{\text{torsional stiffness}}{\text{bending stiffness}} \propto \frac{\text{width}}{\text{height}}
\]

\[\lambda_\parallel\] for helicoid
\[\lambda_{\perp}\] for ribbon

- prep. state
- de-swelling
- heating
- isotropic state

shape transition

Helicoid
Ribbon
Helicoid
Helicoid
Ribbon
9. Shape Transition

narrow
W/H=13

medium
W/H=20

wide
W/H=40
9.1 Narrow VS Wide bars

![Diagram showing the comparison between narrow and wide helicoids and ribbons in different states: dry state, flat state, and isotropic state. The diagrams illustrate the de-swelling and heating processes for both narrow and wide structures, with measurements indicated on the y-axis.](image-url)
Acknowledgements

Kenji Urayama, Department of Materials Chemistry, Kyoto University, Japan, for having introduced me into the phenomenology of NEs, for many helpful discussions on the topic, and for sharing key experimental data.

Mathematics and Mechanics of Biological Assemblies and Soft Tissues, research grant sponsored by Italian Minister of University and Research, Italy.

Outstanding Paper Award by Japanese Society of Liquid Crystals