

COMSOL Conference Europe 2012 Milan

Paul Scherrer Institut

Rugard Dressler

Predicting the retention time of nuclear reaction products in the PSI recoil chamber using COMSOL[®] Multiphysics

Acknowledgments

- Dr. Andreas Jakob (Laboratory for Waste Management) for the possibility to use COMSOL[®] Multiphysics
- Sven Friedel, Thierry Luthy and Zoran Vidakovic

(COMSOL[®] Multiphysics Switzerland) for technical support and help

20

15

10

5

▼ -0.3429

COMSOL
CONFERENCE
EUROPE
2012

1																	2
Н																	Не
3	4											5	6	7	8	9	10
Li	Be											В	С	Ν	0	F	Ne
11	12	12												15	16	17	18
Na	Mg	g												Р	S	CI	Ar
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Са	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те		Хе
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut	FI	Uup	Lv	Uus	Uuo
			58	59	60	61	62	63	64	65	66	67	68	69	70	71	
			Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	
								05	0.(07			100		100	100	1
			90	91	92	93	94	95	96	97	98	99	100	101	102	103	
			Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	

Pure & Appl. Chem. 69 (1997) 2471; 75 (2003) 1613; 76 (2004) 2101; 82 (2010) 753

Milan, 23.10.2012

Experimental setup

Insitu-Volatilization and On-line detection apparatus

PSI - recoil chamber

²⁴⁴Pu(⁴⁸Ca, 4n)²⁸⁸FI

 $^{242}Pu + {}^{48}Ca$

R. Eichler, et al.: Radiochim. Acta 98 (2010) 133 Yu. Oganessian: J. Phys. G **34** (2007) R165

From 3D CAD model to COMSOL[®] geometry

3D modeling & meshing

- elements: 504298
- min.quality: 4.886×10⁻⁴
- average quality: 0.7592
- degrees of freed.: 466377

D. Wittwer, et al.: Nucl. Instr. and Meth. in Phys. Res. B 268 (2010) 28

RENCE

Milan, 23.10.2012

Initial space distribution

- transport of diluted species
- coupling to flow pattern
- SRIM parameterization as initial value
- time dependent flush out

Flush out during 1st second

Flow pattern

Flush out during 1st second

Time dependent yield

Flow pattern

Flush out during 1st second

Conclusions

- COMSOL[®] Multiphysics usable to calculate flow in PSI-RC
- optimum flow condition for transport of super heavy elements obtained

Outlook

- coupling flow with heat transfer
- thermal load by ⁴⁸Ca beam
- heat transfer to PSI-RC hardware and active cooling parts
- additional momentum due to interaction with ⁴⁸Ca beam

Heat deposition in materials by ⁴⁸Ca beam

Paul Scherrer Institute

Thank you for your attention