Coupling Forced Convection in Air Gaps with Heat and Moisture Transfer inside Constructions

M. Bianchi Janetti, F. Ochs, R. Pfluger
michele.janetti@uibk.ac.at

Excerpt from the Proceedings of the 2012 COMSOL Conference in Milan
Content

- Motivation
- Simulation Modell
- Results
Motivation

EU Projekt 3ENCULT (WP3): Hygrothermal Simulation of Beam-Ends

Source: Passiv Haus Institut, Protokollband Nr.32, Architekt Fingerling
Beam-End: Hygrothermal Simulation

- Heat and mass diffusion inside the solid domains
- Heat and mass convection through the air gap
Coupling Forced Convection in Air Gaps with Heat and Moisture Transfer inside Constructions

Heat and Mass Diffusion inside the Solid Domains

PDE, Coefficient Form

\[\frac{\partial u}{\partial \varphi} \frac{\partial \varphi}{\partial t} + \nabla \cdot \left(-D_{m,\varphi} \nabla \varphi - D_{m,T} \nabla T \right) = 0 \]

\[\frac{\partial h}{\partial T} \frac{\partial T}{\partial t} + \frac{\partial h}{\partial T} \frac{\partial \varphi}{\partial T} + \nabla \cdot \left(-D_{e,T} \nabla T - D_{e,\varphi} \nabla \varphi \right) = 0 \]

- Moisture distribution: \(\varphi(x,y,t) \) or \(a_w(x,y,t) \)
- Temperature distribution: \(T(x,y,t) \)

\(\varphi \)	Relative humidity
\(T \)	Temperature
\(u \)	Water content
\(h \)	Specific enthalpy
Coupling Forced Convection in Air Gaps with Heat and Moisture Transfer inside Constructions

Forced Convection in the Air Gap

Example: Energy Balance

\[A v h_a - \alpha \frac{\partial h_a}{\partial t} A \Delta s + \alpha_k (T_b - T_a) L \Delta s \leq A v \left(h_a + \frac{\partial h_a}{\partial s} \Delta s \right) \]
Coupling Forced Convection in Air Gaps with Heat and Moisture Transfer inside Constructions

Forced Convection in the Air Gap: Governing Equations

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho_v)</td>
<td>Vapor density</td>
</tr>
<tr>
<td>(h)</td>
<td>Air enthalpy</td>
</tr>
<tr>
<td>(A)</td>
<td>Cross section area</td>
</tr>
<tr>
<td>(L)</td>
<td>Cross section perimeter</td>
</tr>
<tr>
<td>(\nu)</td>
<td>Air velocity</td>
</tr>
</tbody>
</table>

Inside\hspace{1cm}Outside

Beam

Wall

\[
A \left(\frac{\partial \rho_v}{\partial t} + \nu \frac{\partial \rho_v}{\partial s} \right) = L \beta_k \left(p_{v,b} - p_v \right)
\]

\[
A \left(\frac{\partial h}{\partial t} + \nu \frac{\partial h}{\partial s} \right) = L \alpha_k \left(T_b - T \right)
\]

Moisture balance

Energy balance
Coupling Forced Convection in Air Gaps with Heat and Moisture Transfer inside Constructions

Weak Form on the Boundary

\[
\int_0^S \left\{ \begin{array}{l}
w \left[\frac{\partial \rho_v}{\partial t} - \frac{L \beta_k}{A} (p_{v,b} - p_v) \right] - \frac{\partial w}{\partial s} v\rho_v \end{array} \right\} ds + w v\rho_v,s - w v\rho_v,0 = 0
\]

\[
\int_0^S \left\{ \begin{array}{l}
w \left[\frac{\partial h}{\partial t} - \frac{L \alpha_k}{A c_p \rho} (h_b - h) \right] - \frac{\partial w}{\partial s} v h \end{array} \right\} ds + w v h_s - w v h_0 = 0
\]
Coupling Forced Convection in Air Gaps with Heat and Moisture Transfer inside Constructions

Comparison with Delphin
2D Modell without Convection

Position 1

Position 2

Position 3

Mesh

\[t=10[a] \]

\[aw[\%] \]
Coupling Forced Convection in Air Gaps with Heat and Moisture Transfer inside Constructions

Forced Convection in the Air Gap: Air Velocity in the Gap

Development of the Air Velocity in the Gap

<table>
<thead>
<tr>
<th>t [d]</th>
<th>v [m/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>73</td>
<td>1.25</td>
</tr>
<tr>
<td>146</td>
<td>0</td>
</tr>
<tr>
<td>219</td>
<td>0</td>
</tr>
<tr>
<td>292</td>
<td>0</td>
</tr>
<tr>
<td>365</td>
<td>0</td>
</tr>
</tbody>
</table>
Forced Convection in the Air Gap: Results

325 [d]

345 [d]

365 [d]

Point 1

Point 2

Point 3

aw [-]

no convection

$v_{\text{max}}=0.6$ [m/s]

$v_{\text{max}}=1.25$ [m/s]

$v_{\text{max}}=1.8$ [m/s]
Outlook

Validation
- Numerical error analysis
- Experimental validation

Further development
- Free convection inside air cavities (CFD)
Thank you for your attention!

michele.janetti@uibk.ac.at