Optimizing Performance of Equipment for Thermostimulation of Muscle Tissue using COMSOL Multiphysics

Jan Kocbach¹, Kjetil Folgerø¹, Louise Mohn², Ole Brix³

1. Christian Michelsen Research AS, P.O. Box 6031, NO-5892 Bergen, Norway.
2. Luzmon Norway AS, Norway.
3. Michelsen Medical AS, P.O. Box 6027, NO-5892 Bergen, Norway

Introduction

Thermostimulation = Heating therapy + Electric stimulation of muscles

- **Optimal stimulation:** Electric field in muscles must be above stimulation threshold
- **Painless treatment:** Electric field in nerve region must be below pain threshold
- **Thermostimulation:** High temperature required in muscles for hyperthermia
- **Avoid overheating:** Upper temperature limit of 42 °C at skin surface / inside body

Project target: Build simulation models which can be used to make optimal design choices for thermostimulation equipment: electrode layout and electrode material, heat pad layout, alternative heating methods, effect of body composition on stimulation effect, etc.

Use of COMSOL Multiphysics

Model setup: Heating and heat transfer simulations

- Body tissue modelled as layered structure - bone, muscle, fat, skin
- Heat pads modelled as additional outer layers of silicone rubber and heat wire layer
- AC/DC module used for heat wires. Heat Transfer module with Penne’s Bio-heat equation for heat transfer into body

Use of COMSOL Multiphysics

Model setup: Electrical stimulation simulations

- Body tissue modelled as layered structure
- Electrodes and heat pads modelled as separate thin layers on top of skin layer
- **Model variants:**
 - Finite thickness electrodes with varying electrical conductivity
 - Thin high conductivity electrode wires below electrodes
 - Conductive gel layer with ‘gel leakage’ between electrodes
 - Non-conductive air-layer between electrodes
- **Simulation results evaluation:**
 - Electric field / electric current evaluated along lines at muscle/fat layer boundary
 - Area in muscle cross section with electric field above certain threshold value identified
 - 3D contour plots to visually investigate difference in electric field

Figure 3: Heating and heat transfer model

Figure 4: Electrical stimulation model

Reference:

Results

1. **Heating for different body compositions**

 - Fat layer thickness influences significantly on both pre-heating time and final temperature
 - Need to plan long pre-heating for patients with thick fat layers

2. **Effect of heat wire separation**

 - Heat wire separation critical design parameter – large spacing gives uneven heat
 - 5 mm heat wire spacing leading to significant lowering of heat in the muscle tissue

3. **Effect of electrode conductivity**

 - Low electrode conductivity better from production point of view – gives uneven stimulation
 - Either conductivity σ > 40 S/m required for even stimulation
 - Alternative: Use conductive wire electrode (not shown, see Kocbach et al 2011)

4. **Focusing of electric field due to gel leakage**

 - Leakage of gel to gap between electrodes leads to strong focusing effects
 - 100% gel with case gives significantly reduced electric field in muscle (Kocbach et al 2011)

Excerpt from the Proceedings of the 2012 COMSOL Conference in Milan