Effects of Structural Forces on the Dynamic Performance of High Speed Rotating Impellers.

G Sheno1, B S Shenoy1 and Raj C Thiagarajan2

1 Dept. of Mechanical & Mfg. Engineering, Manipal Institute of technology, Manipal 576104, India.
2ATOA Scientific Technologies Pvt Ltd, 204, Regent Prime, Whitefield, Bangalore 560066, www.atoastech.com

Introduction: Traditional rotor dynamics is based on dominant linear structural dynamic loads. Inclusion of nonlinear, fluidic and thermal force contributions are increasing due to micro and high performance turbines.

Governing Equations and DoE: The equation of motion governs the vibration and dynamics of a linear system.

\[m\ddot{x} + c\dot{x} + kx = f(t) \]

Acceleration of the system in a rotating coordinate system with the centrifugal force \(F_{\text{cent}} \) and the Coriolis force \(F_{\text{cor}} \) are,

\[F_{\text{cent}} = -\rho\Omega^2 e \times e \times (r - r_0) \]
\[F_{\text{cor}} = -2\rho\Omega e \times v \]

Results: The first step in rotor dynamic analysis is the determination of the natural frequency and mode shape extraction.

Conclusions: Vibration dynamics as a function of structural forces with Coriolis effects

Future work: Structural, Flow&Thermal.