A Practical Method to Model Complex 3D Geometries with Non-Uniform Material Properties Using Image-based Design and COMSOL

Jihan Cepeda1,2, S. Birla2, J. Subbiah1,2, and H. Thippareddi1

1 Department of Food Science and Technology, University of Nebraska-Lincoln
2 Department of Biological Systems Engineering, University of Nebraska-Lincoln

October 10, 2013 | jcepeda@huskers.unl.edu
OUTLINE

1. Introduction

2. A Practical Method to Model Complex Multipart Geometries

3. Case Study
 – Modeling Air-Cooling of a Chicken Carcass
OUTLINE

1. Introduction

2. A Practical Method to Model Complex Multipart Geometries

3. Case Study
 – Modeling Air-Cooling of a Chicken Carcass
Modeling Complex Multipart Geometries can be a Challenge

- Image-based 3D reconstruction
Modeling Complex Multipart Geometries can be a Challenge

- Image-based 3D reconstruction
- Form Union/Assembly
Modeling Complex Multipart Geometries can be a Challenge

• Image-based 3D reconstruction
• Form Union/Assembly
OUTLINE

1. Introduction

2. A Practical Method to Model Complex Multipart Geometries

3. Case Study
 – Modeling Air-Cooling of a Chicken Carcass
A Practical Method to Model Complex Multipart Geometries

1. 3D Reconstruction
2. Meshing
3. Material Labeling
4. Material Definition in COMSOL
A Practical Method to Model Complex Multipart Geometries

1. 3D Reconstruction
2. Meshing
3. Material Labeling
4. Material Definition in COMSOL
A Practical Method to Model Complex Multipart Geometries

1. 3D Reconstruction
2. Meshing
3. Material Labeling
4. Material Definition in COMSOL

Excerpt from the Proceedings of the 2013 COMSOL Conference in Boston
A Practical Method to Model Complex Multipart Geometries

1. 3D Reconstruction
2. Meshing
3. Material Labeling
4. Material Definition in COMSOL

Read Mesh of Object
Read Meshes of Subparts

For Each Subpart
 For Each Node in Subpart
 *Find Nearest Neighbor Node in Object Mesh
 *Label the Node in Object Mesh with Corresponding Material

Next Node in Subpart
Next Subpart

Excerpt from the Proceedings of the 2013 COMSOL Conference in Boston
A Practical Method to Model Complex Multipart Geometries

1. 3D Reconstruction
2. Meshing
3. Material Labeling

Output:

<table>
<thead>
<tr>
<th>x [m]</th>
<th>y [m]</th>
<th>z [m]</th>
<th>Material</th>
<th>k [W / m K]</th>
<th>Cp [J / kg K]</th>
<th>ρ [kg / m³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.30E-01</td>
<td>1.14E-01</td>
<td>2.78E-02</td>
<td>Meat</td>
<td>0.265</td>
<td>2,021</td>
<td>1,040</td>
</tr>
<tr>
<td>1.33E-01</td>
<td>1.15E-01</td>
<td>2.98E-02</td>
<td>Meat</td>
<td>0.265</td>
<td>2,021</td>
<td>1,040</td>
</tr>
<tr>
<td>1.77E-01</td>
<td>5.69E-02</td>
<td>5.48E-02</td>
<td>Round Bone</td>
<td>0.265</td>
<td>2,021</td>
<td>1,040</td>
</tr>
<tr>
<td>1.05E-01</td>
<td>7.71E-02</td>
<td>7.06E-02</td>
<td>Air</td>
<td>0.026</td>
<td>1,005</td>
<td>1.2</td>
</tr>
<tr>
<td>7.16E-02</td>
<td>6.97E-02</td>
<td>-1.98E-02</td>
<td>Rib Bone</td>
<td>0.265</td>
<td>2,021</td>
<td>1,040</td>
</tr>
<tr>
<td>7.26E-02</td>
<td>6.55E-02</td>
<td>-1.73E-02</td>
<td>Rib Bone</td>
<td>0.265</td>
<td>2,021</td>
<td>1,040</td>
</tr>
</tbody>
</table>
A Practical Method to Model Complex Multipart Geometries

1. 3D Reconstruction
2. Meshing
3. Material Labeling
4. Material Definition in COMSOL
A Practical Method to Model Complex Multipart Geometries

1. 3D Reconstruction
2. Meshing
3. Material Labeling
4. Material Definition in COMSOL

Excerpt from the Proceedings of the 2013 COMSOL Conference in Boston
A Practical Method to Model Complex Multipart Geometries

1. 3D Reconstruction
2. Meshing
3. Material Labeling
4. Material Definition in COMSOL
OUTLINE

1. Introduction

2. A Practical Method to Model Complex Multipart Geometries

3. Case Study
 – Modeling Air-Cooling of a Chicken Carcass
Case Study

Modeling Air-Cooling of a Chicken Carcass

1. 3D Reconstruction
2. Meshing
3. Material Labeling
4. Material Definition in COMSOL

Excerpt from the Proceedings of the 2013 COMSOL Conference in Boston
Case Study

Modeling Air-Cooling of a Chicken Carcass

- Heat Transfer in Solids
- Transport of Diluted Species
- LiveLink for MATLAB

Excerpt from the Proceedings of the 2013 COMSOL Conference in Boston
CONCLUSION

• Image-based mesh generation, a custom algorithm, and interpolation features of COMSOL Multiphysics can be used to define heterogeneous material properties of complex geometries without the difficulties associated with assembling multiple parts.