Design of a Microreactor for Microwave Organic Synthesis through Microwave Heating Simulations

Wen-Hsuan Lee¹, Klavs F. Jensen¹

¹ Massachusetts Institute of Technology, Department of Chemical Engineering, 77 Mass Ave, Cambridge, MA

Goal:

To design a microreactor for a microwave unit in order to achieve:

- High-throughput organic synthesis, reaction screening
- Kinetic modeling of microwave reactions

Original Design:

- 1.4 mm thick
- Channels: 150 μm
- Material: borosilicate

Heating Issues:

- Uneven temperature distribution across reactor; center of the reactor is hottest.
- Maximum steady-state temperatures too low for desired chemical reactions

Computational Model:

- The RF module: microwave heating and electromagnetic waves physics

\[\nabla \times \mu_r^{-1} (\nabla \times E) - k_0^2 \left(\epsilon_r - \frac{j\sigma}{\omega\epsilon_0} \right) E = 0 \]

\(\rightarrow \) solve electric field
\(\rightarrow \) heat source: \(Q = \frac{1}{2} \omega \epsilon_0 \epsilon' \cdot E \cdot E^* \)

- Single-Phase Flow Module:

\[\nabla \cdot v = 0 \]

\[\rho \frac{Dv}{Dt} = \rho g - \nabla P + \nabla \cdot \tau \]

\(\rightarrow \) velocity of air convection in waveguide

- Heat Transfer Module:

\[\rho c_p \left(\frac{\partial T}{\partial t} + v \cdot \nabla T \right) = \nabla \cdot (k \nabla T) + Q \]

\(\rightarrow \) solve for temperature

Results:

- Surface BC: Natural Convection
- Microwave waveguide and cavity: air convection
- Magnetron: 2.45 GHz, Max power: 300W

Conclusion:

The simulation results match the measurements and uneven temperature distribution. The heating issues were caused by low electric field strength, which varies with the size and position of the reactor. A higher electric field strength could be induced by redesigning the reactor thickness.

Acknowledgement and Reference:

Thanks to NIH for funding and CEM for providing the microwave unit (1. Cavity top view picture from CEM company website: www.cem.com)

Excerpt from the Proceedings of the 2013 COMSOL Conference in Boston