Claus Process Reactor Simulation

Joel Plawsky
Rensselaer Polytechnic Institute
Troy, NY
The Claus process is the largest volume gas desulfurizing process and is used to recover elemental sulfur from hydrogen sulfide.

H₂S is burned and then reduced to form elemental sulfur. Often ammonia is present in the feed and needs to be converted to N₂.

Originally developed as a term project for an Advanced Chemical Reactor Design course.

\[8\text{H}_2\text{S} + 5\text{O}_2 \rightarrow \text{SO}_2 + 7\text{S} + 8\text{H}_2\text{O} \]
Claus Process Reactor

- Claus reactors contain a checkerwall to protect a downstream heat exchanger from the furnace and help mixing.
- Project was the first stage of a process designed to model a Claus reactor and determine the effects of introducing a static mixing element, a Vectorwall™, into the reactor.
 - Preliminary data suggests the Vectorwall™ provides > 40% improvement in throughput and yield.
Claus Process Reactions

<table>
<thead>
<tr>
<th>Reactions and Rate Laws</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H_2S + \frac{3}{2}O_2 \xrightarrow{k_1} SO_2 + H_2O$</td>
</tr>
<tr>
<td>$r_1 = k_1P_{H_2S}P_{O_2}^{0.5}$</td>
</tr>
<tr>
<td>$NH_3 + \frac{3}{4}O_2 \xrightarrow{k_2} \frac{3}{2}H_2O + \frac{1}{2}N_2$</td>
</tr>
<tr>
<td>$r_2 = k_2P_{NH_3}P_{O_2}^{0.75}$</td>
</tr>
<tr>
<td>$H_2 + \frac{1}{2}O_2 \xrightarrow{k_3} H_2O$</td>
</tr>
<tr>
<td>$r_3 = k_3C_{H_2}C_{O_2}$</td>
</tr>
<tr>
<td>$CO + \frac{1}{2}O_2 \xrightarrow{k_4} CO_2$</td>
</tr>
<tr>
<td>$r_4 = k_4C_{O_2}^{0.25}C_{CO}C_{H_2O}^{0.5}$</td>
</tr>
</tbody>
</table>

- The basic model was chosen to consist of 7 non-elementary reactions with 11 separate species. Reactions are very fast and highly exothermic.
- The model was designed to solve the fluid mechanics, heat transfer, reaction kinetics, and mass transfer processes governing the behavior of the reactor.
- Thermodynamic properties – NASA polynomial format.
- Transport properties – kinetic theory approximations.
• The model coupled the Chemical Engineering, CFD, and Heat Transfer modules together and assumed compressible flow.
• Used simplified 1-D and eventually 2-D geometries. Adaptive meshing was required (~700,000 – 1,000,000 degrees of freedom).
• Class project solved the kinetics in ideal continuous stirred tank and plug flow reactors.
• COMSOL had trouble with reaction rates containing fractional orders.
 • Express the rate laws in logarithmic form and reconvert.
 • Penalty functions were required to insure that all concentrations remained in bounds.
 • A solution could not be obtained unless the heat generation was slowly ramped up to its ultimate value.

Claus Process Reactor
Comsol Implementation

Gas Velocity

Heat Generation Rate
• Implemented a 2-D formation to provide the first approximation to Vectorwall™ formulations.
• Great differences in rates and distribution of species depending on the insert geometry. All geometries have same open area for flow.
• Sulfur conversion is greater in the Vectorwall™ reactor.

Hydrogen Sulfide Concentration Profiles
Claus Process Reactor
Comsol Implementation

- Reactions actually take place in a flame. Comsol simulation was able to show the flame front.
- Look at different Vectorwall™ configurations. Specifically, whether it is better to have a central opening or central obstruction.

Flame Fronts
(heat generation rate)
Conclusions and Future Work

• We successfully simulated the Claus process in ideal chemical reactors, in a dispersed, plug flow reactor, and a two-dimensional flow reactor with checkerwall and VectorWall™, static mixing configurations.

• The 2-D simulations showed where problem spots may lie and where the enhanced mixing of the static mixing element may be put to best use.

• The next steps will be:
 – To apply this kind of modeling effort to incinerators, coal combustors, or fertilizer operations.
 – To develop full 3-D simulations using the supercomputer resources at RPI’s Computational Center for Nanoscale Innovations.
 – Goal: To define the optimal arrangement of Vectorwall™ elements.

• Funding for this project was provided by:
 New York State Pollution Prevention Institute