Scale-up Design of Ultrasound Horn for Advanced Oxidation Process Using COMSOL Simulation

Zongsu Wei
October 10th, 2013
Boston, MA
OUTLINE

1. Background
2. Objectives
3. Simulation
4. Results
5. Future Work
Ultrasound (>20kHz)

Cavitation

Emulsifying, Synthesis, Imaging, Damage Detection, cleaning ...

- Organic pollutants
 - polycyclic aromatic hydrocarbon
- Inorganic pollutants
 - arsenic
- Disinfection
 - reduce chemical addition
- Desorption
 - enhanced oil recovery

$T \approx 5000 \text{ K}$

$H_2O \rightarrow \cdot H + \cdot OH$

(Suslick, 1989)

(Moussatov et al., 2003)
Typical ultrasonic horn

- Localized cavitation
- Low energy efficiency — 8-29%a
- Scaling-up is very difficult

a Contamine et al., 1994; Kimura et al., 1996; Weavers et al., 2000; Bhirud et al., 2004; Pee, 2008; Thangavadivel et al., 2009.
Objectives

• Improved horn configuration – Enhanced cavitation

• COMSOL – Tool
 – Piezoelectric material model
 – Linear elastic material model
 – Pressure acoustics model

a — typical horn; b — designed horn
Design Verification

Pressure

Cavitation

Removal
Experimental Characterization

- **Hydrophone Measurements**
 - *a device that can record underwater sound by receiving pressure signals*

- **Sonochemiluminescence (SCL)**

\[\text{Luminol} + \cdot \text{OH} \rightarrow \text{Product} + h\nu \]
Experimental Results

Energy efficiency increased to 31.5%
Summary

- More energy-emitting surfaces
- Multiple reactive zones
- Higher energy efficiency

COMSOL
- Comparable results
- A reliable design tool
Large-Scale Evaluation

2D and 3D acoustic pressure distribution in the water tank
Future Work

• Large-volume reactor

• Flow cell reactor

• Array of designed horns

• Sediment treatment
Acknowledgement

• The COMSOL Conference
• Dr. Linda Weavers, Dr. John Lenhart, Dr. Ruiyang Xiao, Dr. Meiqiang Cai, Dr. Chin-Min Cheng, Matthew Noerpel, and Mengling Stuckman
Questions?
Governing Equations

• Piezoelectric material model for transducer

\[
\begin{align*}
\text{Stress} - \text{charge} & \quad \begin{cases}
T = c_E S - e^T E \\
D = e S + \varepsilon_S E
\end{cases} \\
\text{Strain} - \text{charge} & \quad \begin{cases}
S = s_E S + d^T E \\
D = d T + \varepsilon_T E
\end{cases}
\end{align*}
\]

• Linear elastic material model for irradiator

\[-\rho \omega^2 u - \nabla \cdot \sigma = F_V e^{i\phi}\]

• Pressure acoustics model for water

\[\nabla^2 P - \frac{1}{c^2} \frac{\partial^2 P}{\partial t^2} = 0\]
Physical Characterization – Hydrophone

volts \propto pressure
Physical Characterization – Sonochemiluminescence (SCL)

$Luminol + \cdot OH \rightarrow Product + h\nu$

Typical horn
Energy

\[P_{ac} = (dT/dt) \times C_p \times M \]

<table>
<thead>
<tr>
<th>Ultrasonic horn</th>
<th>Freq. (kHz)</th>
<th>Electrical power input (W)</th>
<th>Reaction volume (mL)</th>
<th>Emitting area (cm²)</th>
<th>Acoustic power (W)</th>
<th>Power intensity (W cm⁻²)</th>
<th>Power density (W L⁻¹)</th>
<th>Energy efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designed</td>
<td>20</td>
<td>1000</td>
<td>1250</td>
<td>134</td>
<td>315</td>
<td>2.35</td>
<td>252</td>
<td>31.5</td>
</tr>
<tr>
<td>Typical (Branson) (^a)</td>
<td>20</td>
<td>350</td>
<td>50</td>
<td>1.20</td>
<td>66.5</td>
<td>55.8</td>
<td>1340</td>
<td>19.0</td>
</tr>
<tr>
<td>Typical (Fisher Scientific) (^b)</td>
<td>20</td>
<td>275</td>
<td>60</td>
<td>1.20</td>
<td>25.8</td>
<td>21.5</td>
<td>430</td>
<td>9.38</td>
</tr>
</tbody>
</table>

\(^a\) Weavers et al., 2000

\(^b\) Pee, 2008

\(^c\) Contamine et al., 1994; Kimura et al., 1996; Weavers et al., 2000; Bhirud et al., 2004; Pee, 2008; Thangavadivel et al., 2009.

8 – 29% \(^c\)
Cavitation

\[TA + \cdot OH \rightarrow HTA \]

\[k_{nor} = k_{th} \times (PD_{dh}/PD_{th}) \]

- \(k_{nor} \) — normalized rate (\(\mu M \text{ min}^{-1} \))
- \(k_{th} \) — rate constant for typical horn (\(\mu M \text{ min}^{-1} \))
- \(PD_{dh} \) — power density for designed horn (W)
- \(PD_{th} \) — power density for typical horn (W)

<table>
<thead>
<tr>
<th>Ultrasonic horn</th>
<th>HTA formation rate ((\mu M \text{ min}^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designed</td>
<td>0.36</td>
</tr>
<tr>
<td>Typical (Sonics & Materials)(^b)</td>
<td>0.08</td>
</tr>
<tr>
<td>Typical (Fisher Scientific)(^c)</td>
<td>0.18</td>
</tr>
</tbody>
</table>

\(^a\) Weavers et al., 2000
\(^b\) Price and Lenz, 1993
\(^c\) He, 2006

- Initial water temperature for experiment a is 20°C;
- Electrical power input is 500 W
Naphthalene Degradation

\[\text{Naphthalene} + \cdot \text{OH} \rightarrow \text{Products} \]

\[k_{nor} = k_{th} \times \left(\frac{PD_{dh}}{PD_{th}}\right)^a \]

\[^a\text{Weavers et al., 2000}\]
Large-Scale Application

- Water tank setup

Diagram of experimental setup for hydrophone measurements in plexiglas box (the depth tangential to horn tip is defines z = 0; 1—Branson 902R Model transducer; 2—serial stepped ultrasonic horn; 3—Reson T4013 hydrophone; 4—water; 5—plexiglas box)
Large-Scale Evaluation

Transducer (PZT-5H) - piezoelectric material model
Horn irradiator (stainless steel) - linear elastic material model
Tank (water) - pressure acoustics model
Large-Scale Application

3D (left) and contour (right) mapping of hydrophone measurements in plexiglas tank

(X-Y plane at $z = 0$ cm)
Large-Scale Application

3D (left) and contour (right) mapping of hydrophone measurements in plexiglas tank

(X–Y plane at \(z = +4 \) cm)
Large-Scale Application

3D (left) and contour (right) mapping of hydrophone measurements in plexiglas tank
(X–Y plane at \(z = -4 \text{ cm} \))
Chemical Structure

Naphthalene

Ethylenediaminetetraacetic Acid (EDTA)
Schematic diagram of longitudinal vibration of single step horn and its equivalent circuits

\[
\begin{align*}
F_2 &= \alpha_{21} \ddot{\xi}_1 + \alpha_{22} F_1 \\
\dot{\xi}_2 &= \alpha_{11} \ddot{\xi}_1 + \alpha_{12} F_1
\end{align*}
\]

\[
\begin{bmatrix}
\dot{\xi}_2 \\
F_2
\end{bmatrix} =
\begin{bmatrix}
\alpha_{11} & \alpha_{12} \\
\alpha_{21} & \alpha_{22}
\end{bmatrix}
\begin{bmatrix}
\ddot{\xi}_1 \\
F_1
\end{bmatrix}
\]

\[
A_i =
\begin{bmatrix}
\alpha_{11}^i & \alpha_{12}^i \\
\alpha_{21}^i & \alpha_{22}^i
\end{bmatrix}
\]

\[
A = A_1 A_{i-1} \cdots A_2 A_i
\]

\[
A =
\begin{bmatrix}
\alpha_{11} & \alpha_{12} \\
\alpha_{21} & \alpha_{22}
\end{bmatrix}
\]

\[
(A)
\]

\[
(b)
\]
Diagram of experimental set-up