Phase field modeling of He precipitate networks on solid-state interfaces

D. Yuryev and M.J. Demkowicz
Department of Materials Science and Engineering
Massachusetts Institute of Technology
10/10/13

Funding: This work was supported by Center for Materials at Irradiation and Mechanical Extremes, an EFRC, funded by the DOE Office of Basic Energy Sciences
Wetting of solid state interfaces

2. A. Kashinath, (Unpublished)
Wetting of solid state interfaces

2. A. Kashinath, (Unpublished)
Wetting of solid state interfaces

Water droplets wetting the surface of a leaf and a glass pane

A solid state interface forms between blocks of Cu and Nb

Location dependence of $\gamma_{\text{CuNb}}(J/m^2)$ at the interface plane [1]

Preferential He precipitation at high energy regions of the interface

2. A. Kashinath, (Unpublished)
Wetting of solid state interfaces

Water droplets wetting the surface of a leaf and a glass pane

A solid state interface forms between blocks of Cu and Nb

Atomistic simulation of precipitation of He in the Cu-Nb interface[2]

Preferential He precipitation at high energy regions of the interface

2. A. Kashinath, (Unpublished)
How do He networks behave?

- Linear pathways
- Bubbles or caps
- Alternate configuration

Free surface

High energy region
Phase field method

- Describes microstructures using continuum field variables (Φ) by solving Cahn-Hilliard Equation

\[
\frac{\partial \varphi_g}{\partial t} = \nabla \cdot M_g \nabla \frac{\delta F}{\delta \varphi_g}
\]

- Tracks evolution of complicated, arbitrary morphologies without explicitly tracking surfaces

\[
F = \int_V \left[f(\varphi_g) + \frac{K}{2} \left| \nabla \varphi_g \right|^2 \right] dV
\]

Bulk energy

Interface energy

Diffuse interface

Building a COMSOL Model

Location dependant interface energy

Simplified model of interface energy

\[\theta = \cos^{-1} \left(\frac{\gamma_{CuNb} - \gamma_{NbHe}}{\gamma_{CuHe}} \right) \]

Low energy surface, large \(\theta \)

High energy patches, small \(\theta \)

He network behavior at a single interface
Conclusions

• Constructed a phase field model in COMSOL for wetting of solid state interfaces by He

• Single line of high energy patches results in cap configuration

• Other geometries of high energy patches (i.e. multiple rows) need to be examined to achieve other He network geometries